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Abstract

Making the transformation from austenite to martensite difficult is called stabilisation of

austenite, a phenomenon that occurs in many cases. The straightforward method to

analyse the influence of a specific factor on the stabilisation of austenite is through its

influence on the martensite start (Ms) temperature. This work outlines the use of an

artificial neural network to model the Ms temperature of engineering steels from their

chemical composition and austenite grain size. The results are focussed on analysing the

role in the stabilisation of austenite of alloying elements in steels including less

common elements such as V and Nb, as well as the austenite grain size. Moreover, a

physical interpretation of the results is presented.



1. Introduction

Microalloyed steels in the as-forged condition are commonly used in the automotive

industry. For heavy-duty applications such as that for diesel engine crankshafts, a

surface induction hardening heat treatment is carried out in critical regions of the

components to enhance their service performance through adding strength and fatigue

resistance. The goal of the induction hardening heat treatment is to form a fully

martensitic structure in the outer surface of the component to locally increase the

hardness and tensile strength. Thus, factors affecting martensitic transformation are of

vital importance in the design of industrial processes of these engineering steels.

Making the transformation from austenite to martensite difficult is called stabilisation of

austenite, which is due to a change in chemical composition, heat treatment or plastic

deformation. 1 Of these three cases, chemical stabilisation is the most common;

therefore, the influence of the chemical composition on the martensite start (Ms)

temperature has been extensively reported in the literature for low alloy steels and

several empirical equations have been proposed. 2-7 However, these empirical equations

are not sufficiently general and are known to provide inaccurate answers for

microalloyed steels, or steels whose compositional range are out of bounds from those

used to formulate the equations.

On the other hand, Olson and Cohen 8 developed a model for heterogeneous martensitic

nucleation that obviates the need for pre-existing embryos with martensitic structure,

but requires a suitable nucleating defect in austenite. The initial defect might be a group

of dislocations in an austenite-austenite interface 9 or frozen-in vacancies obtained by

quenching form austenitisation temperature. 10 Therefore, grain boundaries and other

lattice imperfections may also act as nucleation sites and contribute to make the



austenite phase unstable. On the contrary, they can also contribute to the stabilisation of

the austenite phase by hindering the growth of the transformation product. 10 Which of

these various contributions predominates depends on the chemical composition and the

nature of the imperfections.

It is followed that to find out how the austenite grain size and alloying elements,

including those used as microalloying elements (V and Nb), can affect the Ms

temperature is an important issue to be investigated. The aim of this work is to develop

an artificial neural network model to predict the Ms temperature of steels and interpret

the influence of the chemical composition and the austenite grain size. Neural networks

are useful whenever the intricacy of the problem is overwhelming from a fundamental

perspective and where simplification is unacceptable. They represent a powerful method

of non-linear regression modelling.

2. The experimental database

The definition of the Ms temperature in any model ideally requires a complete

description of the chemical composition and the austenite grain size. A search of the

literature 9-15 allow us to collect 320 individual cases where detailed chemical

composition, prior austenite grain size (PAGS), and Ms values were reported.

Table l shows the list of 15 input variables used for the Ms temperature analysis. It was

possible to find 270 cases where all of these variables were reported with the exception

of nitrogen concentrations. It would have been unreasonable to set this latter

concentration to zero when its value is not reported. Steels inevitably contain this

impurity element in practice. For cases where the N value was missing its concentration

was set to the mean value calculated for the 320 cases of the database. For the other



elements such as Mn, Ni, etc, the concentrations can truly be set to zero when they are

not reported. This is because they would not be deliberate added or would have

concentrations close to the limits of chemical analysis with the techniques generally

used 16.

3. Brief description of neural network

The aim is to be able to estimate the Ms temperature as a function of the variables listed

in Table 1. The analysis was carried out using variables normalised between +0.5 and –

0.5; this normalisation is not necessary for the analysis, but allows a convenient

comparison of the influence of individual input variables on an output. The

normalisation procedure is expressed quantitatively as
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where xN is the normalised value of x which has maximum and minimum values given

by xmax and xmin respectively.

The network consisted of 15 input nodes (Table 1), a number of  hidden nodes, and an

output node representing the Ms temperature (Fig. 1). The network was trained using a

randomly chosen of 170 examples from a total of 320 available; the remaining 150

examples were used as new experiments to test the trained network.

Linear functions of the inputs xj are operated by a hyperbolic tangent transfer function
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so that each input contributes to every hidden unit. The bias is designated θi and is

analogous to the constant that appears in linear regression. The strength of the transfer



function is in each case determined by the weight wij. The transfer to the output y is

linear
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This specification of the network structure, together with the set of weights, is a

complete description of the formula relating the inputs to the output. The weights were

determined by training the network and the details are described by MacKay 17-18. The

training involves a minimisation of the regularised sum of squared errors. The term σv

used below was the framework estimation of the noise level of the data. The complexity

of the model was controlled by the number of hidden units (Fig. 2).

Figure 2 shows that the inferred noise level decreases monotonically as the number of

hidden units increases. However, the complexity of the model also increases with the

number of hidden units. A high degree of complexity may not be justified, and in an

extreme case, the model may in a meaningless way attempt to fit the noise in the

experimental data. MacKay 19-20 has made a detailed study of this problem and defined a

quantity (the ‘evidence’) which comments on the probability of a model. In

circumstances where two models give similar results for the known data, the more

probable model would be predicted to be that which is simpler; this simple model would

have a higher value of evidence. The evidence framework was used to control σv. The

number of hidden units was set by examining performance on test data. A combination

of Bayesian and pragmatic statistical techniques were therefore used to control the

complexity of the model. 19-21

Figure 3 shows that a large number of hidden units did not give significantly lower

values of σv; indeed, the test set error has a minimum at three hidden units. Therefore,

three hidden units were found to give a reasonable level of complexity to represent the

variations of Ms temperature as a function of the input variables of Table 1. The levels



of agreement for the training and test data are shown in Fig. 4(a) and 4(b); good

predictions occur in both instances.

4. Use of the model

4.1 Effect of microalloying elements

The main advantage of the neural network model as compared with other empirical

models is the ability of analysing separately the influence on the stabilisation of

austenite of each one of the alloying elements. In this sense, the role of microalloying

elements such as V and Nb on Ms temperature has been analysed in this section.

Figure 5 shows the influence of V and Nb on Ms temperature for three different grades

of carbon and considering a constant PAGS of 20 µm. It is clear from this figure that the

higher microalloying content, the higher Ms temperature. This effect is more

pronounced as carbon concentration increases. It is possible to get a physical

understanding of these results. According to their chemical properties, V and Nb can be

classified as very strong carbide formers. This behaviour may be attributed to the

influence of alloying elements on the activity of carbon in the solid solution. Keeping

this in mind, we can expect that interactions between carbon and carbide former

elements tend to weaken the role of carbon rising thus Ms. Likewise, these interactions

are stronger as carbon content increases.

This is consistent with the following thermodynamic considerations. In the

thermodynamic approach presented by Bhadeshia 22-23, martensitic transformation is

said to be triggered when the chemical driving force (∆Gγα’) achieves a critical value at

the Ms temperature ( 'γα
CG∆ ). Following Olson and Cohen, 24 Ghosh and Olson 9



proposed that the total energy describing the heterogeneous semicoherent nucleation

process of martensite is given by the sum of a defect dislocation energy and a fault

energy. At sufficient driving force (obtained by cooling or an applied stress), the fault

energy becomes negative and gives rise to a barrierless condition where a nucleus can

grow spontaneously, at a rate controlled by the interfacial mobility. The critical

condition for semicoherent nucleation is then given by a balance between the negative

fault energy and the interfacial frictional work. Therefore, Gosh and Olson proposed

that 'γα
CG∆  is the addition of two terms. The former includes the fault energy, and the

latter is the interfacial frictional work between the austenite matrix and martensite

nucleus which is composition dependent. The critical value in J mol-1 of the driving

force needed to trigger martensitic transformation is:
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where c0.5 are the square root of the alloying elements concentration in mole fraction.

The coefficients were obtained by Ghosh and Olson by establishing the c0.5 dependence

and fitting over a wide range of compositions: the maximum concentrations were

approximately 2 wt.-% for carbon and nitrogen, 0.9 wt.-% vanadium and about 2-28

wt.-% for all the other alloying elements. 25

The thermodynamic calculations involved here have been performed using the

commercial software package, MTDATA. 26 The two sublattice model 27 was used to

express the Gibbs free energies of ferrite and austenite phases. The first sublattice is

occupied by substitutional atoms and the second is occupied by interstitial atoms and

vacancies. The Gibbs free energies of austenite, Gγ, and ferrite of the same composition,



Gα, were calculated separately by allowing only one phase to exist in the system. Then,

the molar Gibbs free energy differences, ∆Gγα = Gα − Gγ, at different temperatures were

obtained. The Gibbs free energies of both phases include unitary terms of free energies,

mixing entropies, excess free energies describing the deviation from the regular solution

model, and magnetic contributions. However, to calculate ∆Gγα’ also requires an

estimation of the Zener ordering energy, 28 which arise because carbon atoms in ferrite

can in some circumstances order on one of available sublattices of octahedral interstitial

sites, thereby changing the symmetry of the lattice from bcc to bct. The ordering

temperature, Tc, is a function of the carbon concentration 29. If the Ms temperature

exceeds Tc then the martensite is bcc, but when it is below Tc martensite is bct. The

ordering energy is a complicated function of temperature and carbon concentration, and

was calculated as in Ref. 29. The required free energy is then given by ∆Gγα’=

∆Gγα + GZener.

Figures 6 and 7 show the evolution of ∆Gγα’ for different grades of V and Nb for carbon

concentration of carbon C=0.1 wt.-% and C=0.8 wt.-%. It is suggested from these

figures that the influence of the microalloying elements on Ms temperature is small for

the lower value of carbon concentration (C=0.1 wt.-%) meanwhile the higher carbon

content (C=0.8 wt.-%), the more influence on rising Ms temperature.

4.2 Effect of grain size on the stabilisation of austenite

Figure 8 shows the influence of PAGS on Ms temperature in a Fe-C steel. It is clear

from this figure that an increase on Ms is achieved if the PAGS increases. Likewise, Fig.

8 shows that the lower carbon content, the higher increase in Ms temperature.



As it was mentioned in the previous section, the temperature of initiation of martensitic

transformation, and its progress are controlled by the chemical and non-chemical free

energies of the system. The chemical free energy difference (∆Gγα’) is the driving force

of the transformation and is converted to non-chemical free energy. The latter partly

goes into the energy of lattice imperfections inevitable upon transformation. 10

In carbon steels, the morphology of martensite changes with the carbon content. The

martensite consists of bundles of laths (lath-shaped martensite) with a high density of

dislocations inside each lath in low carbon steels and, as carbon content increases, it

changes to lenticular (lens-shaped martensite) with a midrib and a high density of

dislocations as well as internal twins. 30

Several studies 31-34 have documented a clear effect of PAGS on Ms temperature in

ferrous systems. Unemoto and Owen 31 carried out a definitive study of the effect of

grain size in bursting-type Fe-Ni-C alloys. These authors concluded that the Ms

temperature in these alloys is influenced by the PAGS because of the interference with

the autocatalytic nature of the burst-type martensitic transformation. However, they

describe the martensite morphology as lath-shaped martensite, and lath martensite

transformation is often associated with grain boundaries. 32 A nucleation argument,

therefore, would suggest higher Ms temperature (i.e. easier nucleation) as grain size is

decreased since grain boundary area increases. In the present analysis, the opposite

effect is observed.

On the other hand, Brofman and Ansell 33 proposed that the Hall-Petch strengthening of

the austenite explains the depression of Ms temperature as PAGS decreases. Hirth 35 has

reviewed various theories of grain size strengthening in metals and reported some

experimental evidence for the expression
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where ρ is the dislocation density and D is the austenite grain diameter. If this argument

is valid, Hall-Petch strengthening results from increasing dislocation density with

decreasing grain size, thus directly strengthening the matrix, i.e. the austenite.

Therefore, a reduction of the grain size will increase the resistance of the austenite to

plastic deformation locally as well as macroscopically. This increased austenite

resistance will directly impede the martensite transformation by increasing the non-

chemical free energy opposing the transformation. 36 This theory explains the drop in

Ms temperature as PAGS decreases. However fails to explain why Ms temperature

increases faster as PAGS increases in low carbon (C=0.1 wt.-%) than in a high carbon

(C=0.8 wt.-%) steels.

An alternative explanation is outlined considering that higher austenitisation

temperatures are required to achieve the same PAGS in low carbon steels than in high

carbon steels. Therefore, a more likely cause of rising the Ms temperature as PAGS

increases is the reduction of the energy needed for the complementary shear during

transformation, which originates in the elimination of lattice imperfections due to higher

austenitisation temperature. 37 Likewise, the nucleation of martensite may be boosted by

an increase of frozen-in vacancies into the austenite grain due to higher quenching

temperatures in low carbon steels. The increase in vacancies makes the austenite phase

less stable by increasing the nucleation sites 9,37. Therefore, assuming the austenitisation

temperature and the quenching temperature identical, Ms temperature should increase as

austenitisation temperature increases since a higher quenching temperature produces

more frozen-in vacancies and hence more nucleation sites.



4.3 Validation of the model

Figure 9 shows a comparison between the neural network model predictions and the

experimentally measured Ms temperatures carried out in five very different alloys

whose actual compositions are listed in Table 2. S1 and S2 are low carbon HSLA steels

microalloyed with Nb, S3 and S4 are medium carbon forging steel with and without Nb

as microalloying element, respectively, and S5 is a commercial martensitic stainless

steel. All of these are used for commercial purposes, and therefore, their Ms temperature

is a critical parameter whose determination is important in the processing route of the

steel. Hence, its accurate determination is very interesting from an industrial point of

view. It could be concluded from the figure that the neural network model presents an

excellent accuracy on Ms temperature prediction.

5. Conclusions

A neural network method based on a Bayesian framework has been used to rationalise

an enormous quantity of published experimental data on Ms temperature of steels. It is

now possible, therefore, to estimate the role of elements such as V and Nb whose use as

microalloying elements has recently increased due to the good combination of

mechanical properties that microalloyed steels present.

The formulated neural network model has been also applied towards the understanding

of the role of the austenite grain size on stabilising the austenite or, by contrast, on

triggering the martensite transformation. The increase of Ms temperature as PAGS

increases seems to reveal that the reduction of lattice imperfections and the increase in

frozen-in vacancies due to higher austenitisation temperatures increases martensite

nucleation sites and then enhance the transformation. It has been demonstrated that the



model gives a good estimation of the experimental Ms temperatures obtained in

different kinds of commercial steels.
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Table 1. Variables that influence Ms temperature. SD is standard deviation
Range Average SD

C, wt.-% 0 – 1.62 0.3774 0.2098

Mn, wt.-% 0 – 1.98 0.8652 0.4882

Si, wt.-% 0 - 3.400 0.2328 0.3836

Cr, wt.-% 0 - 17.98 1.4255 3.2575

Ni, wt.-% 0 - 27.20 1.9705 5.3646

Mo, wt.-% 0 - 5.10 0.1850 0.4611

V, wt.-% 0 - 4.55 0.0758 0.3579

Co, wt.-% 0 - 12.27 0.0820 0.8145

Al, wt.-% 0 - 1.10 0.0187 0.1183

W, wt.-% 0 - 12.99 0.1269 1.0665

Cu, wt.-% 0 - 0.28 0.0388 0.0778

Nb, wt.-% 0 - 0.2 0.0004 0.0048

B, wt.-% 0 - 0.001 0.0000 0.0001

N, wt.-% 0.0001-0.0140 0.0015 0.0039

PAGS, µm 5 - 339 55.1731 37.3855



Table 2. Chemical compositions and PAGS of the steel tested.

% C % Mn % Si % Cr % Ni % Mo % V % Nb PAGS, µm

S1 0,07 1,50 0,37 0,039 0,49 0,021 0,004 0,027 9

S2 0,20 1,10 0,34 0,011 0,02 0,008 0,009 0,003 10

S3 0,31 1,22 0,25 0,138 0,09 0,03 0,004 0 21

S4 0,60 0,49 0,35 14,52 0,17 0,57 0,18 0 50

S5 0,37 0,34 0,94 4,80 0 1,34 1,19 0 30



Figure 1.- Neural Network model used in this study

Figure 2. Variation of σV as a function of hidden units.

Figure 3. Variation of test error as a number of hidden units.

Figure 4. Comparison between predicted and experimental Ms values: (a) training data
and (b) test data.

Figure 5. Effect of (a) V and (b) Nb on Ms temperature. PAGS=20 µm.

Figure 6. Effect of V on ∆Gγα’ and 'γα
CG∆  for (a) C=0.1 wt.-% and (b) C=0.8wt.-%.

Horizontal lines represent 'γα
CG∆ .

Figure 7. Effect of Nb on ∆Gγα’ and 'γα
CG∆  for (a) C=0.1 wt.-% and (b) C=0.8wt.-%.

Horizontal lines represent 'γα
CG∆ .

Figure 8. Effect of PAGS on Ms temperature for a Fe-C steel.

Figure 9. Comparisson between experimental and calculated Ms temperature for the
steels listed in Table 2.



Figure 1.- Neural Network model used in this study



Figure 2. Variation of σV as a function of hidden units.
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Figure 3. Variation of test error as a number of hidden units.
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(a)

(b)

Figure 4. Comparison between predicted and experimental Ms values: (a) training data
and (b) test data.
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(a)

(b)

Figure 5. Effect of (a) V and (b) Nb on Ms temperature. PAGS=20 µm.

300

500

700

900

0 1 2 3 4
V, wt.-%

M
s,

 K

C=0.1 w t.-%

C=0.4 w t.-%

C=0.8 w t.-%

300

500

700

900

0 0.05 0.1 0.15 0.2
Nb, wt.-%

M
s,

 K

C=0.1 w t.-%

C=0.4 w t.-%

C=0.8 w t.-%



(a)

(b)

Figure 6. Effect of V on ∆Gγα’ and 'γα
CG∆  for (a) C=0.1 wt.-% and (b) C=0.8wt.-%.
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(a)

(b)

Figure 7. Effect of Nb on ∆Gγα’ and 'γα
CG∆  for (a) C=0.1 wt.-% and (b) C=0.8wt.-%.
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Figure 8. Effect of PAGS on Ms temperature for a Fe-C steel.

450

500

550

600

650

700

750

800

850

0 100 200 300

PAGS, µm

M
S, 

K
C=0.8 wt.-%
C=0.1 wt.-%



Figure 9. Comparisson between experimental and calculated Ms temperature for the
steels listed in Table 2.
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