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ABSTRACT

The kinetics of recrystallisation have in the past been represented using the classical “Avrami
theory”. Some authors have used the theory empirically whereas others have incorporated
proper nucleation and growth functions into the Avrami equation. In developing such mod-
els, 1t has commonly been assumed that there is in an initial number density of nuclei which
begin growth at the instant the material reaches the isothermal heat treatment temperature.
The exponent n in the Avrami equation is then obtained by fitting to experimental data.
We present here an Avrami representation of recrystallisation kinetics which avoids this
procedure and takes account of the nature of the nucleation sites. This allows a meaningful
interpretation of the Avrami exponent; the theory is then adapted to anisothermal kinetics
using the Scheil rule.

1. OVERALL TRANSFORMATION KINETICS

The theory for overall transformation kinetics was originally developed by Kolmogorov
(1937), Johnson and Mehl (1939) and Avrami (1939); its main feature is the treatment
of impingement between different particles via an extended space concept. It was our aim
to apply the method to recrystallisation, taking into account some specific details of the
nucleation site in order to obtain more physically-meaningful parameters from the analysis.
The deformed microstructure is identified as «a, the recrystallised microstructure as 3; there
obviously is no change in composition or crystal structure when « “transforms” to 3, simply
a change in the defect density. The derivation follows well-established practice: nucleation
and growth are allowed to occur throughout the sample, in the first instance ignoring im-
pingement so that the calculated volumes are erroneous, i.¢e., they are the extended volumes.
Assuming isotropic growth at a rate T and a constant nucleation rate per unit volume N,
the extended volume fraction of 3 is given by

¢ = NaY%4/3 (1)



A change in extended volume fraction can be related to a change in the real volume fraction
by multiplying the former by the probability of finding untransformed a:

6¢ = (1 —¢)oc (2)

On substituting equations (1) into (2) and integrating over time, we get:

(=1—exp (—NWT3t4/3) (3)

2. GRAIN BOUNDARY NUCLEATION

The derivation presented above assumes that nucleation occurs at random throughout the
sample. The role of grain boundaries is, however, paramount in the recrystallisation prob-
lem; for example, a classic model of the nucleation of a recrystallised grain involves the
formation of a grain boundary bulge. The deformed grain surface can therefore be regarded
as the nucleation site. It would be more appropriate to avoid the assumption of random
nucleation and implement grain boundary nucleation into the Avrami scheme, as first con-

sidered by Cahn (1967).

Nucleation on a grain boundary also involves impingement effects since there can be more
than one nucleation site on any given grain face. Cahn considered phantom nucleation
on the boundary plane and then applied the same sort of theory to deal with the resulting
extended area, as Avarmi did for extended volume. The extended area can be converted into
a real area of grain boundary consumed by (3 using a relationship of the form of equation 2.
The extended volume can be obtained by integrating all the areas that a plane parallel to
the boundary intersects, from a distance —oo to +oc normal to the boundary. The extended
volume is then converted into a real volume using equation 2.

If Ng is the grain boundary nucleation rate per unit area, and Opg grain boundary area per
unit volume, the fraction recrystallised is given by (Cahn, 1967):

(=1—exp |-(")75 fP(aP)] (4)
where

aP = (NpY?)5t (5)
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where p is a coordinate normal to the boundary plane. There are two limiting solutions,



firstly when a® is very small i.e. the early stages of recrystallisation when nucleation can be
considered to occur at random, giving equation 3. The other limiting solution occurs when
aP is large so that all sites are saturated and nucleation stops early in the transformation,
in which case:

( =1—exp(—20pTt) (9)

We note that when the Avrami equation is applied empirically, by fitting recrystallisation
data to an equation of the form

(=1—exp(—At") (10)

it is frequently the case the n = 1. On the other hand, the Cahn approach actually predicts
n = 1 given site saturation and has the additional advantage that nucleation and growth
are included explicitly. In the present work, which deals with an austenitic stainless steel
(302), it is experimentally justified to assume site saturation at an early stage of recrys-
tallisation. Fig. 1 shows that the number of recrystallised grains per unit area, as observed
on micrographs, is insensitive to the fraction recrystallised, as would be expected from site
saturation.
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Fig. 1: The variation of number of grains per unit area with fraction recrystallised for
samples annealed at different temperatures in a 302 stainless steel.

3. ANISOTHERMAL RECRYSTALLISATION

3.1 Scheil rule. Many industrial annealing processes are anisothermal; stainless steel strip
in particular is annealed continuously rather than in batches. To deal with anisothermal
annealing, we assume a Scheil rule in which the annealing cycle is treated as a series of
isothermal steps, each of magnitude §t. Suppose the first step in this corresponds to a
temperature T; which in an interval dt; gives fraction (; of recrystallisation. In the next
step Ty, transformation begins from zero until it achieves a value (; and it is then allowed to




continue for a further time period d¢; to give a total fraction (5. This stepwise calculation
is continued until recrystallisation is completed.

For the Scheil rule to be applicable, the reaction must be isokinetic. In other words, all the
parameters should have the same temperature dependence. This should be approximately
true in recrystallisation since both nucleation and growth essentially are controlled by the
motion of the grain boundary. It should be precisely true once site saturation occurs.

4. EXPERIMENTAL METHOD AND RESULTS

Samples of 0.8 mm gauge 302 stainless steel supplied by Avesta Sheffield L.td. were cut into 1
cm squares, welded onto a type K thermocouple and inserted into a chamber furnace through
a chimney in the roof of the furnace to avoid fluctuations in bulk furnace temperatures. The
temperature was measured and recorded throughout the heat treatment, for each sample.
Samples were mounted, polished and electro-polished, then observed on the plane parallel
to the rolling direction using channelling contrast of backscattered electrons on a CamScan
S2 scanning electron microscope. The accelerating voltage used was 15 kV at a working
distance of approximately 9 mm, the sample was kept normal to the electron beam and the
backscatter detector was mounted directly above the sample. An example micrograph is give
in Fig. 2 Samples were analysed using a Seescan image analyser from which recrystallised
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Fig. 2: Micrograph showing a partially recrystallised sample of 302 stainless steel
annealed for 600 s at 982 K

grain sizes and fractions recrystallised were measured. The results are listed in Table 1.
These data were used to train a model based on anisothermal Cahn kinetics.

Included in Fig. 3 is a comparison of model output and experimental data. Standard
calculations for growth and nucleation rates were used, based upon atoms jumping across
a boundary and grain boundary bulging respectively. All calculations are anisothermal for
samples of thickness 0.8mm entering a furnace at 982 K.

5. CONCLUSIONS

It is found that using an Avarmi type equation but with Cahn’s grain boundary nucle-
ation, gives physically meaningful time exponents. The value of the Avrami exponent is
predicted to be unity once site saturation occurs. This is consistent with empirical data in



Table 1: Table of experimental results from a type 302 stainless steel

Furnace Temperature | Annealing time | Fraction recrystallised | Grain size
Tf / K t / S § /Nm
980 660 0.62 + 0.18 0.98 + 1.32
982 1200 0.70 + 0.24 1.08 £+ 0.16
982 600 0.54 + 0.24 1.41 + 0.36
996 615 0.85 + 0.14 1.31 + 0.06
1001 660 0.85 £ 0.14 1.21 + 0.10
1073 30 0.12 £ 0.12 1.92 £ 0.82
1083 45 0.84 £ 0.14 1.41 + 0.62

the published literature. The model was then adapted for recrystallization during contin-
uous heating using the Scheil rule, and was observed to given reasonable agreement with
experimental data after fitting to isothermal data.
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Fig. 3: Example outputs generated using the overall transformation kinetics model, for
a 0.8 mm gauge sample in an anisothermal anneal with a furnace temperature of 982
K: a) Variation in the fraction recrystallised with time. b) Variation of recrystallised
grain size with time. ¢) ‘Avrami plot’ of In(In(1/(1-¢))) against In(time) the slope
of which yields the value of the Avrami exponent n; note that the slope in this case
changes from an initial value of 4 to a final value of 1 before the observable onset of
recrystallisation. d) The variation of the number of recrystallised grains with time -
levelling off indicating site saturation has occurred.



