Properties of Small Metallic Particles

Helen Chappell Aikaterina Plati Yi Shen

Carbon nanotube with iron particle in the middle

blobby iron particle

Kinloch, 2002

What we did...

- Iron particles
- 10-wt% nickel-iron alloy particles
- Varied shape, size and composition
- Statistical sampling of 'homogeneous' alloy

Melting Temperature

• Flat interface, $G_L = G_S$

Melting Temperature

• Flat interface, $G_L = G_S$

Curved interface, $G_L = G_S + \sigma ds/dn$

temperature

■ Mt data (G_L , G_s)

Fitted polynomial equations to the data

$$G_L = AT^2 + BT + C$$

$$G_s = D |^2 + F | + L$$

$$G_{SR} = G_S + \sigma \, ds/dn$$

■Created Curvefit3 → $G_{sr}, T_{m(r)|x,\sigma}$ ■Plotted results in Excel

<u>Melting temperature for spherical</u> <u>austenite particles</u>

Nickel-iron particles

■ *Gs*-ferrite *y = -0.0172T*² - 35.564T + 7602.5

■ Gs-austenite y = -0.0141T² - 44.14T + 12886

■ *G_L y* = -0.0146*T*² - 50.209*T* + 25307

<u>Melting temperature for cylindrical</u> <u>ferrite particles in alloy (10%Ni)</u>

<u>Melting temperature for cylindrical</u> <u>austenite particles in alloy (10%Ni)</u>

<u>Melting temperature for spherical</u> <u>ferrite particles in alloy(10% Ni)</u>

Melting temperature of austenite and ferrite particles in pure iron and alloy(10%Ni) $\sigma=0.5$

 $(1/Radius) / m^{-1}$

Statistical Analysis

Fixed volume

$$\sigma_x = \sqrt{N_a \times f(1-f)}, \quad f=0.1$$

$$= N_a = (4/3 \pi r^3)/V_m \times N$$

<u>Statistically derived melting</u> <u>temperature for Fe - Ni particles</u>

Summary of Results

- Spherical particles reduce T_{mr} by greatest amount
- Cylindrical particles reduce T_{mr}
- Small particles, large σ reduces T_{mr}
- Iron austenite largest reduction in T_{mr}
- Alloy ferrite largest reduction in T_{mr}
- Extremely small particles composition influences melting temperature

That's all folks!

The change in ds/dn

\Box Sphere = $2V_m/r$

\Box Cylinder = V_m/r

MT-DATA

- Thermodynamic data SGTE database
- Minimises Gibbs free energy
 - Equilibrium Composition
 - Volume fractions of phases
- Phases can be suppressed
- No kinetic information