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Abstract

Widmanstétten ferrite grows by a paraequilibrium dis-
placive mechanism but it rarely occurs in isolation in
steels. It is usually preceded by the formation of al-
lotriomorphic ferrite by a reconstructive transforma-
tion mechanism. In this paper, we deal with a novel
modification of the Avrami overall transformation ki-
netics theory as adapted by Cahn, for grain boundary
nucleated phases. Our modification deals with the
simultaneous occurrence of two or more transforma-
tions. The method is demonstrated to faithfully re-
produce published data on the volume fractions of al-
lotriomorphic and Widmanstatten ferrite as a function
of chemical composition, austenite grain size and heat
treatment (isothermal or continuous cooling transfor-
mation).

INTRODUCTION

An understanding of Widmanstétten ferrite is impor-
tant because it is a phase which greatly influences the
mechanical properties of steels. There are many in-
vestigations which suggest that Widmanstétten fer-
rite can be detrimental to toughness [1]. It tends to
grow in packets of plates which are in identical crys-
tallographic orientation, allowing cracks to propagate
across packets without much deviation.

Watson and McDougall [2] demonstrated that when
Widmanstétten ferrite grows, the shape of the trans-
formed region changes. This shape deformation is an
invariant-plane strain (IPS) with a large shear com-
ponent and is a characteristic of displacive transfor-
mation. Carbon nevertheless has to partition into the
austenite during the growth of Widmanstitten ferrite.
The transformation is therefore classified as a parae-
quilibrium displacive transformation. The growth rate
of Widmanstétten ferrite can therefore be calculated

Displacive Phase Transformations and Their
Applications in Materials Engineering
Edited by K. Inoue, K. Mukherjee, K. Otsuka,
and H. Chen
The Minerals, Metals & Materials Society, 1998

419

using the theory for the carbon-diffusion controlled
growth of plate shapes after allowing for an appro-
priate amount of strain energy due to the IPS shape
change [3]. Its nucleation mechanism is also under-
stood to the extent that it is possible to calculate the
transformation-start temperature (Ws) and the rate
as a function of undercooling below Wg [4,5]. It should
therefore be possible to estimate the overall transfor-
mation kinetics as a function of the steel composition
and heat treatment.

However, Widmanstatten ferrite rarely occurs in isola-
tion. It is usually preceded by the formation of allotri-
omorphic ferrite at the austenite grain surfaces and
there may be other transformations such as pearlite
which compete with Widmanstatten ferrite [6]. There-
fore, to model the kinetics of the Widmanstétten fer-
rite transformation (i.e. the purpose of this paper), it
is necessary to develop theory capable of handling sev-
eral simultaneous precipitation reactions which can in
principle interfere with each other both spatially and
in terms of solute partitioning.

The evolution of volume fraction during solid-state
transformation can be modelled using the classical
Johnson-Mehl-Avrami theory, which has been re-
viewed by Christian [7]. We introduce this in order
to set the scene for the modifications made to allow
for simultaneous reactions.

OVERALL TRANSFORMATION KINETICS

A given precipitate particle effectively forms after an
incubation period 7. Assuming growth at a constant
rate G, the volume w, of a spherical particle is given

by
wy = (4n/3)G3}(t — 1) (t>7) (1)

with w, = 0 for (¢ < 7) where t is the time defined
from instant the sample reaches the isothermal trans-
formation temperature.



Particles nucleated at different locations may eventu-
ally touch; this problem of hard impingement is ne-
glected at first, by allowing particles to grow through
each other and by permitting nucleation to happen
even in regions which have already transformed. The
calculated volume of 3 phase is therefore an extended
volume. The change in extended volume due to par-
ticles nucleated in a time interval t = 7 to t = 7 + d~
is, therefore,

dVg = w IVdr

e ‘ 3 3 (2)
Vg = (4mV/3) _OG I(t —7)%dr
where I is the nucleation rate per unit volume and V/
is the total sample volume.

Only those parts of the change in extended volume
which lie in untransformed regions of the parent phase
can contribute to the change in real volume of 5. The
probability that any change in extended volume lies
in untransformed parent phase is proportional to the
fraction of untransformed material. It follows that the
actual change in volume in the time interval t to t +dt
is

Vs .

. Vs
Vg = —Vln( - 7)

so that
t
—1In (1 — %) = (47r/3)G3/0 I(t—7)%r  (3)

This approach is limited to the precipitation of a
single phase; it can be applied to cases where more
than one decomposition reaction occurs, if the individ-
ual reactions occur over different temperature ranges,
i.e. they occur successively and largely independently
[8,9]. This is not the case in practice. The adaptation
of the Johnson—Mehl-Avrami approach to deal with
many reactions occurring simultaneously is illustrated
with a simple example below.

SIMULTANEOUS REACTIONS

The principles involved are first illustrated with a sim-
plified example in which a and 3 precipitate at the
same time from the parent phase which is designated
v. It is assumed that the nucleation and growth rates
do not change with time and that the particles grow
isotropically.

The increase in the extended volume due to particles
nucleated in a time interval t = 7 to t = 7 + d7 is,
therefore, given by

dvg = %sz(t -7}V dr (4)
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avs (5)
where G, Gg, I, and I are the growth and nucle-
ation rates of o and [ respectively, all of which are
assumed here to be independent of time. V is the to-
tal volume of the system. For each phase, the increase
in extended volume will consist of three separate parts.
Thus, for a:

4
gﬂ'G%(t - 1)3I5V dr

(a) o which forms in untransformed ~.
(b) «a which forms in existing a.

(c) a which forms in existing 3.

Only o formed in untransformed v will contribute to
the real volume of . On average a fraction [1 — (V,, +
V5)/V)] of the extended volume will be in previously
untransformed material. It follows that the increase
in real volume of « in the time interval t to t + dt is

given by
Va+ Vs .
dVy = (1 - Q—V—) av;
and similarly for 3,
Va+V,
Vs = (1 - —+—") ave

In general, V, will be some complex function of Vj
and it is not possible to integrate these expressions to
find the relationship between the real and extended
volumes. However, in certain simple cases it is possible
to relate V, to V3 by multiplication with a suitable
constant, K, in which case V3 = KV,

The equations relating the increment in the real vol-
ume to that of the extended volume can therefore be
written as

dV, = (1 — M) dve (6)
|
Vs + KVs
e —_—————— € 7
dVs (1 i ) avg (7)

They may then be integrated to find an analytical
solution relating the extended and real volumes anal-
ogous to that for single phase precipitation.

\% -1 V.

& - e K
v 1_'_Kln[l V(1+ )]
E: -K In Vs (1+K
v 1+ K |4 K

The total extended volume fraction is found for each
phase by integrating equations 4 and 5 with respect
to 7. This gives:

Coo = (HLK) (1 — exp [—%(1 + K)wGiIat‘lD




K 1+ K
o= () (o[ (55) i)

These equations resemble the well known Avrami
equation for single phase precipitation with extra fac-
tors to account for the presence of a second precipitate
phase. When the volume fraction of both precipitating
phases is very small the equations approximate to the
expressions for each phase precipitating alone. This is
because nearly all of the extended volume then lies in
previously untransformed material and contributes to
the real volume. As transformation proceeds, the vol-
ume fraction of each phase predicted for the phases
precipitating simultaneously becomes less than that
predicted if the phases were precipitating alone. This
is expected, since additional phases reduce the frac-
tion of the extended volume which lies in previously
untransformed material.

Since the nucleation and growth rates were assumed
to be constant, it is possible to calculate explicitly the
value of K, which is given by

K = V3/Va = (I3G})/(IG3)

An example calculation for the case of linear (i.e. con-
stant) growth is presented in Fig. 1, for the case where
the growth rate of 3 is set to be twice that of a (with
identical nucleation rates). The final volume fraction
of the 3 phase is eight times that of the o phase be-
cause volume fraction is a function of the growth rate
cubed.
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Fig. 1 : Simultaneous precipitation of 3 and the . Iden-
tical nucleation rates but with 3 particles growing at twice

the rate of the a particles.

COMPLEX SIMULTANEOUS REACTIONS

The analytical expressions discussed above for simul-
taneous reactions rely on the assumptions of constant
nucleation and growth rates, and on a random dis-
tribution of nucleation sites. None of these are rele-
vant for the present purposes. For the phases of inter-
est (allotriomorphic and Widmanstatten ferrite, and
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pearlite) the nucleation and growth rates change with
the progress of the transformation as the composition
of the austenite changes and the nucleation sites are
grain surfaces.

There are two applications of the Avrami extended
space idea for grain boundary nucleated reactions, the
first applying to the gradual elimination of free grain
boundary area and the second to the gradual elimi-
nation of volume of untransformed material [10]. If
we consider a particular boundary of area O, for a
system with n phases, we have for the j'th phase,

(1 - —2"=1Oi)dO§i

Op

where dO; is the change in the area intersected by
phase j on a plane parallel to the boundary but at a
distance y normal to that boundary, during the small
time interval ¢ to t+At. dOj is similarly, the change in
extended area of intersection with the same plane at y.
This may have a contribution from particles nucleated
throughout the period ¢t = 0 to t = mAt, where m is
an integer, so that

do; = (®)

dO§ = O o (I k AT)(Aj k4 Al)

where A; i , is the rate of change of area of intersection
on plane y of a particle which nucleated at 7 = kAT.
The number of such extended particles is (Op1; xAT)
where [ is the nucleation rate per unit area.

To obtain a change in the extended volume of the
phase j it is necessary to integrate as follows:

max
dVe =

a;
J /
y=0

where ¢]**® is the maximum size of a particle of phase
j in a direction normal to the grain boundary plane.
It follows that the change in real volume is

dO;dy

Z?:l‘/i e
AW

This instantaneous value of dVj, together with corre-
sponding changes in the volumes of the other n — 1
phases, can be used to update the total volume of
each phase in a computer implemented numerical pro-
cedure by writing

dv; = (1 - (9)

‘/j,t-}-At = V;’,t + d‘/j,t for _] =1...n
so that a plot of the fraction of each phase can be
obtained as a function of time. The growth and nu-

cleation rates can also be updated during this step,




should they have changed because of solute enrich-
ment in the matrix or because there is a change in tem-
perature during continuous cooling transformation.

The next section explains how these equations apply
for the allotriomorphic ferrite, Widmanstitten ferrite
and pearlite.

ALLOTRIOMORPHIC FERRITE

Classical nucleation theory is used to model the nucle-
ation of allotriomorphic ferrite, with the grain bound-
ary nucleation rate per unit area given by:
kT G* T,

1= exp{—T_;Q}exp{—T*}
where h is the Planck constant, k is the Boltzmann
constant, C; = 1.214 x 102m~2 is a fitted con-
stant [11], R is the universal gas constant and Q =
200kJmol~! is a constant activation energy repre-
senting the barrier to the transfer of atoms across
the interface. The activation energy for nucleation,
G* = Cy0%/AG?, where o represents the interfacial
energy per unit area, C = 5.58 and o = 0.022J m~2,
another fitted constant and AG is the maximum
chemical free energy change per unit volume avail-
able for nucleation [12]. The second exponential re-
lates to the achievement of a steady-state nucleation
rate; 7o = n2h(4ackT) ! exp{Q/RT}, where n. is the
number of atoms in the critical nucleus and a, is the
number of atoms of the critical nucleus which are at
the interface [7].

(10)

The growth of allotriomorphic ferrite is assumed to
occur under paraequilibrium conditions, so that the
half-thickness g of the layer during isothermal growth
is given by:

g=ay(t—r1)/2 (11)

where a; is the one-dimensional parabolic thickening
rate constant. The growth rate slows down as the
particle grows the concentration gradient ahead of the
moving interface decreases to accommodate the solute
that is partitioned into the austenite. The growth
along the grain boundary is taken to be three times
that normal to it, giving an aspect ratio of three [13].

The parabolic rate constant is obtained by solving the

equation [7]:

2| = %f {_%} fc{_l }
= (1 ex er

™ ! 1€xp 4D 20%

% -7

with —_—
Y — oy

fi

and where 27* and z® are the paraequilibrium car-
bon concentrations in austenite and ferrite respec-
tively at the interface (obtained using a calculated
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multicomponent phase diagram), T is the average car-
bon concentration in the alloy and D is a weighted

average diffusivity [14] of carbon in austenite, given
by:

D ’ D{z} dx

= T -z

Y™

where D is the diffusivity of carbon in austenite at a
particular concentration of carbon.

WIDMANSTATTEN FERRITE

There is fine detail in TTT (time-temperature—
transformation) diagrams, but they consist essentially
of two C—curves (Fig. 2). One of these represents re-
constructive transformations at elevated temperatures
where atoms are mobile within the time scale of the
usual experiments on steels. The lower temperature
C—curve represents displacive transformations such as
Widmanstatten ferrite and bainite.
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=
<
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Fig. 2: Schematic T'T'T" diagram illustrating the two C—

curves and the 7}, temperature.

The lower C—curve has a flat top; the temperature cor-
responding to this flat top is identified as T}, the high-
est temperature at which displacive transformation
occurs during isothermal heat-treatment. 7}, is ei-
ther the Widmanstatten ferrite-start (W) or bainite—
start (Bs) temperature depending on the driving force
available at T}, for the steel concerned.

Fig. 3 shows two plots; the first is a calculation of
the driving force for the paraequilibrium nucleation
of ferrite at T}, allowing carbon to partition between
the austenite and ferrite. The second is the case where
there is no partitioning at all during the nucleation of
ferrite.

It is evident that the nucleation of Widmanstitten
ferrite or bainite cannot in general occur without the
partitioning of carbon. The second interesting point
is that the curve illustrated in Fig. 3a is linear. This
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Fig. 3: Curves representing the free energy change nec-
essary in order to obtain a detectable degree of transfor-
Note that
each point represents a different steel. (a) The free energy

mation to Widmanstitten ferrite or bainite.

change assuming paraequilibrium nucleation. (b) The fre=

energy change assuming partitionless nucleation.

straight line, which represents all steels, is henceforth
called the universal Gy function and is given by:

Gy =3.637(T —273.18) — 2540  Jmol™! (12)
with Gy giving the minimum free energy change nec-
essary to nucleate Widmanstatten ferrite or bainite in

any steel.

A linear relation such as this cannot be explained by

nucleation based on heterophase fluctuations. Con-
sider a nucleation rate (/') equation:
Iy x vexp —G*/kT (13)

where v is an attempt frequency and all the other
terms have their usual meanings. When this is rear-
ranged, we get

—-G* x AT (14)

where 8 = kT In{Iy /v}. Consequently, the Gy versus
T relation can only be linear if

G*xG N (15)
and not the inverse square relationship implied by

classical nucleation theory. This is entirely consistent
with the theory for martensitic nucleation [15].

What then are the conditions which determine
whether at T}, it is Widmanstatten ferrite that forms
first or bainite?
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In order for a phase to form, it must nucleate and
grow. Nucleation will occur at Tj, when the driving
force for nucleation becomes less than G y:

AG < Gy (16)
The nucleated phase can develop into Widmanstatten
ferrite if a further condition is satisfied, that the
driving force for paraequilibrium growth exceeds

the stored energy of Widmanstitten ferrite, which
amounts to about 50 Jmol~!.

For the theory presented here, the nucleation rate per
unit area is given by

Cy C4AG } (17)

I=——expl ——% _
20; P { RT ~ CsRT

where C3 = 6.78x107 1% m?s, Cy = 2.065x% 10 J mol~!
and Cs = 2540 Jmol ™!, all of which are constants de-
termined by fitting to experimental data [11]. The
equation applies below the Widmanstatten ferrite
start temperature.

Trivedi has given a solution for the problem of the
diffusion-controlled growth of plates. The shape of the
plates is taken to be that of a parabolic cylinder and is
assumed to be constant throughout growth. The plate
lengthening rate (V}) at a temperature T for steady
state growth is obtained by solving the equation:

fi =(7p)*® exp{p}erfe{p®*}

1+ (re/r) f1S2{p}] 18)

where the Péclet number p, which is a dimensionless
velocity, is given by p = Vjr /2D The weighted-average
diffusion coefficient for carbon in austenite is used
as before, but with the integral evaluated over the
range T to x,., where z, is the carbon concentration
in the austenite at the plate tip. z, may significantly
differ from the equilibrium carbon concentration 7%
because of the Gibbs-Thompson capillarity effect [7]
which allows for the change in equilibrium concentra-
tion as a function of interface curvature; z, decreases
as interface curvature increases, and growth ceases at
a critical plate tip radius r. when z,, = Z. For a finite
plate tip radius(r),

z, =71 4+ (T'/r)] (19)
where I' is the capillarity constant [7] given by
_ 20 (@Y _ v
r— oV (1 —27%)/(x %) (20)

RT 1+ [d(InT;)/d(Inz7%)]

where o is the interface energy per unit area, taken
to be 0.2 Jm~2, Iy is activity coefficient of carbon in




austenite, and V;,, = molar volume of ferrite. Note
that for Widmanstitten ferrite, the paraequilibrium
concentrations (e.g. z7%) are calculated after allowing
for the 50 Jmol=1 of stored energy [4].

This assumes that the @ composition is unaffected
by capillarity, since zov is always very small. Te can
be obtained by setting z, = Z. The function S, {p}
depends on the Péclet number; it corrects for varia-
tion in composition due to changing curvature along
the interface and has been numerically evaluated by
Trivedi [7]. Consistent with experimental data, we
have also assumed the Zener hypothesis that the plate

tip adopts a radius which is consistent with the max-
imum rate of growth (3,7].

PEARLITE

The nucleation of pearlite is treated as for allotriomor-
phic ferrite but with a nucleation rate which is two
orders of magnitude smaller. This is achieved by re-
ducing the number density of nucleation sites.

The growth of pearlite was approximated to occur by a
paraequilibrium mechanism, although it never in prac-
tice grows in this way. It is also assumed that the ma-
Jority of diffusion occurs in the austenite just ahead of
the transformation front. In these circumstances, the
growth rate is given by [16]

D s gve g0
w=="— 2" 5
9 SaSe 7Y — 7 g s

sc

]

(21)

where 0 represents cementite, a the ferrite within the
pearlite and ~ the austenite. g is a geometric factor
equal to 0.72 in plain carbon steels, s is the inter-
lamellar spacing, whose critical value at which growth
stops is s¢ and so, sg are the respective thickness of
ferrite and cementite lamellar. The values of s and s¢;
are estimated empirically [17] and it is assumed that
s adopts a value consistent with the maximum rate of
growth.

RESULTS AND DISCUSSION

There have been many studies about the occurrence
of Widmanstatten ferrite in steels as a function of
the chemical composition, austenite grain size and the
cooling rate during continuous cooling transformation
[e.9. 6,18-20]. It is consequently well-established that
Widmanstétten ferrite is favoured in austenite with a
large grain structure. This is probably because Wid-
manstatten ferrite is rarely found in isolation but often
forms as secondary plates growing from allotriomor-
phic ferrite layers. The prior formation of allotriom'or-
phic ferrite, which is favoured by a small grain size,
enriches the residual austenite with carbon, so it is
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not surprising that a small austenite grain size sup-
presses Widmanstétten ferrite. For the same reason,
the an increase in cooling rate will tend to favour the
formation of Widmanstitten ferrite.

These and other concepts are implicitly built into the
model presented here. This is because allotriomorphic
ferrite, Widmanstitten ferrite and pearlite are allowed
to grow together assuming that thermodynamic and
kinetic conditions are satisfied. Their interactions are
all taken into account during the course of transforma-
tion. It follows that it should be possible to reproduce
the excellent quantitative data recently published by
Bodnar and Hansen [6]. The present analysis is re-
stricted to Fe-Si-Mn—C stee] rather than the microal-
loyed steels also studied by Bodnar and Hansen.

The chemical composition of the stee] is given in Ta-
ble 1. They used heat-treatments which led to three
different austenite grain sizes of 30, 55 and 100 pLm.
In addition, samples were cooled at five different rates;
11, 16, 30, 59 and 100 °C min—!.

Widmanstétten ferrite can nucleate directly from the
austenite grain surfaces or indirectly from allotriomor-
phic ferrite-austenite interfaces. The present model
includes both of these scenarios because of an approx-
imation made in the formulation of extended area in
equation 8. It is strictly not possible to separate out
the contributions dOj5 from each phase (for all values
of y) when the phases grow at different rates. The
result of the approximation is therefore to allow Wid-
manstatten ferrite to form even if the entire austenite
grain surface is decorated with allotriomorphic ferrite.
This amounts approximately to the case for secondary
Widmanstétten ferrite.

C Si Mn Cu v
0.18 | 0.18 1.15 0.09 < 0.003
P S Nb Al N
0.015 | 0.030 | < 0.005 | 0.026 0.0073

Table 1: Chemical composition / wt%

The reasonable overall level of agreement between ex-
periment and theory is illustrate in Fig. 4, for all
of the data from [6]. In all cases where the allotri-
omorphic ferrite content is underestimated, the Wid-
manstétten ferrite content is overestimated. This is
expected both because the composition of the austen-
ite changes when allotriomorphic ferrite forms and be-
cause its formation changes the amount of austenite
that is free to transform to Widmanstéatten ferrite.
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Fig. 4: A comparison of the calculated volume fraction

versus experimental data reported by Bodnar and Hansen
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Fig. 5 : Calculated evolution of microstructure in a sam-
ple with an austenite grain size of 100 um, at a cooling
rate of 101 °C min~?!
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Fig. 6 : Calculated evolution of microstructure in a sam-

ple with an austenite grain size of 100 ym, at a cooling

rate of 11 °C min~!
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MICROSTRUCTURE MAPS

Figures 5-8 show calculations which illustrate how
the model can be used to study the evolution of mi-
crostructure as the sample cools. The calculations are
for the steel composition stated in Table 1.

All of the generally recognised trends are reproduced.
The amount of Widmanstitten ferrite clearly in-
creases with the austenite grain size, and with the
cooling rate within the range considered. Bodnar and
Hansen [6] suggested also that the effect of cooling rate
on the amount of Widmanstatten ferrite was smaller
than that of the austenite grain size (for the values
considered). This is also evident in Figures 5-8.
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Fig. 7 : Calculated evolution of microstructure in a sam-
ple with an austenite grain size of 30 um, at a cooling
rate of 101 °C min ™!
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Fig. 8 : Calculated evolution of microstructure in a

sample with an austenite grain size of 30 um, at a cooling

rate of 11 °C min~!




SUMMARY

The classical Johnson-Mehl-Avrami theory for over-
all transformation kinetics has been adapted to deal
with the simultaneous formation of allotriomorphic
ferrite, Widmanstétten ferrite and pearlite. A com-
parison with published experimental data has shown
that the model developed is reasonable both quanti-
tatively and with respect to well-established trends.
The model can now be used to study theoretically,
the evolution of microstructure as a function of the
alloy composition, the austenite grain size and the
cooling conditions. Further work is need to include
other phases such as bainite and martensite, and to
deal with microalloying additions. It would also be
interesting to incorporate nucleation sites other than
austenite grain surfaces.
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