
(26/3)
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Using the first of the above expressions for AN, it follows that

_ BB' _ II sin p·o - AI)a-- - --- -----
AN lo sin Xo. sin Ao

In order to simplify the formulro we de~ote ? = 1 + Il by d, and
o

after eliminating AI' we finally obtain, with the aid of the extension
formula (26/1)

1 ./----a = ~.-- (v d2 - sin2Ao - cos Ao)
sm Xo

In this formula the glide strain is expressed by the initial position
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FIG. 37.-Glide Strain as a Function of Extension for Various Initial

Angles of the Glide Plane.

of the glide elements and by the amount of extension. If, instead
of the extension, the final position of the glide elements is introduced,
the following formuhe, which are particularly convenient for
numerical calculations, are obtained:

a = C?S A _ C?S Ao (26/4)
smx slnXo

or
sin Aa = (cot A - cot Ao) _._0 (26/4a)
sm Xo

The formula (26/3) shows that equal extensions may be accom-
panied by different amounts of glide strain, dependent upon the
initial position of the glide elements. How strong the effect of the
orientation is, can be seen from Fig. 37, in which the glide strain is
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expressed as a function of the extension for various initial angles
ofthe glide plane (for the sake of simplicity )'0 = 1'.0 has been chosen).
For every position of the glide elements the glide strain corresponding
to a small extension can be calculated according to the formula

6.d
6.a = -.----

Sill 1'.0cos ),

y(-t)

Z(lT)

which is obtained by differentiation from the equation (26/3).
Another formal description of glide (by means of a transformation

of co-ordinates) which we shall use in what follows, is contained in
Fig. 38. The xy plane repre-
sents the glide plane and the
y axis the glide direction_
Let OPo be the length of the
crystal to be stretched; the
direction of tension is given
with reference to the glide
elements by the co-ordinates
(xoYozo)' When glide occurs
there is a gliding parallel
to T in the direction t,
as a result of which Po

FIG. 38.-Diagl'am to Illustrate Glide by
Means of a Transfol'mation ofCo-ol'dinates. arrives at PI- Let a repre-

sent the crystallographic
glide strain, the glide displacement is then given by the product
a _zo- Hence, the transformation of the co-ordinates is:

Xl = Xo
Yl = Yo + zo' a
Zl = Zo

and for

we obtain

~= Jl + 2aYozQ+ a2z0
2

l1 l02-

Further, since Yo = lo cos AO and Zo = lo sin 1'.0

we have

(26/5)
l .f ----t = d = 1 + /)= v 1 + 2a sin 1'.0 cos AO + a2 sin2 1'.0
o

In this formula the extension is expressed by the glide strain and
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the initial orientation of the glide elements; it is also obtained
directly by solving, e.g., (26/3), with respect to d.

By means of this representation of glide it is now quite easy to
follow the change of the cross-section which occurs during extension
of cylindrical crystals. It has already been pointed out that the
elliptical cylinder (the ribbon), which develops during glide, is
usually broader than the original crystal. In what follows, the
expressions for the two semi-axes of the elliptic cross-section will be
given as functions of the original orientatioll and the orientation at
any given moment in the course of extension (99). These formuhe
are obtained as follows:

We start by finding the equation of the original cylinder in the
co-ordinate system shown in Fig. 38. By introducing the trans-
formed co-ordinates which correspond to the glide we obtain the
equation of an elliptical cylinder, which is compared with the normal
form. In this way the following expression is obtained:

')+ 2 • 2 2· R2 (1 1 )~ a sm Ao + a sm 1.0 cos Ao = . A 2 + B2 '
in which R denotes the radius of the initial circular section, A and B
the half-axes of the sectional ellipse after extension. If now we bear
in mind that the volume remains constant during extension by
glide 1 (R27Tlo = AB7Tl1) it follows that after some calculation

4 _ 2(2 cos (Ao.- A) . sin ),+ sin2 (~'o - A)) +
P P sm A sm2 .,o ~o . 2

sm ), = 0 (26/6)
sin2 Ao

The four roots Pi of this equation, of which two each differ only

by the sign, are the desired ratios ~ and ~.

Two special cases must be briefly mentioned. For Ao = 1.0' i.e.,
for glide along the great axis of the translation ellipses, there are two
roots of the equation equal to 1. The width of the band always
coincides with the diameter of the initial section. The second
special case relates to the maximum width at infinite extension (94).
This case corresponds to thc convergence of the longitudinal direc-
tion towards the operative glide direction. A = 0 must therefore
be inserted in the above formula, and the limiting value for increase
in width by simple glide is then found to be

(-'i) = s~n Ao (26/6a)
R max. sm 1.0

1 How exactly this condition is fulfilled will be shown in Section 60.



62 Geometry of the Mechanisms of Crystal Deformation

If for 1.0 we substitute the angle KO between the direction of glide
and the great axis of the glide ellipses, the maximum increase in
width can also be expressed by the formula

(26/6b)

"~t
FIG. 39.-0rientation of the Glide
Elements in the Crystal. Diagram
Illustrating an Analysis of the

Components of Tensile Stress.

(AR-) = Js~n: :<0 + cos2 KO
max sIn Xo

since XO' 1.0 and KO are connected by the relationship cos 1.0 =
cos Xo . cos KO (cf. Fig. 39).

Simple glide in compression can be described much more briefly
[(lOO), (101)]. Fig. 40 shows dia-
grammatically a crystal specimen
before and after compression.

'A Contrary to expectation the lattice
rotation which accompanies com-
pression is not simply the opposite
of that which occurs in tension.

If, in the compression test, thc
longitudinal direction is regarded
as that of the normal to the com-

pression plates, then on the great circle this will not move away
from the operative glide direction. Lattice rotation takes the form
rather of an approach of the longitudinal direction to the pole ofthe

1
r:h 8,/~~4\Vt Z\
A/At
/
FIG. 40.-Diagram Illustrating Glide in Compression.

glide plane, which follows directly from the fact that the line of
intersection of the glide plane with the compression plates retains
the same inclination to the crystal axes throughout the test.

The formula connecting compression with glide strain can also
be found directly from Fig. 40. Let Xo and Xl be again the angles
between the glide plane and the longitudinal direction before and
after compression; then

(26/7)
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and since the eccentricity (K) of the glide direction, corresponding to
the rotation of the lattice, remains constant, this formula can be
extended to include also 1.0 and Al'

The relationship between glide strain and compression is then

1 _ (lO)2 _ 1 2 . , 2 2e2 -- r - + a sm Xo cos 1.0 + a cos 1.0 .
1

(26/8)

In the case of plastic bending by glide, the exact geometrical treat-
ment of which has still to be formulated, parallel epipedic plates
acquire as a rule a saddle shape [aluminium crystals (102)]. When
the operative glide elements are in a certain special position relative
to thc axis of bending, cylindrical bending can also occur.

27. Transformation of Indices in Glide
In Section 26 we discussed the relation of glide to lattice rotation

and deformation. In the present section we will deal briefly with
its effect on the crystalIographic symbols of directions and planes.
From the rotation during glide of the longitudinal axis of the speci-
men relative to the crystallographic axes, it is apparent that the
indices are not retained. In general, the atomic array constituting
a direction or a plane changes its crystallographic nature continuously
during glide.

Let (HKL) be the indices of the glide plane, [UVW] tho~e of the
glide direction, then the following transformation formulre will
apply according to (103) :

The direction [uvw] is transformed into [u'v'w'] by

u' = ~t + U(uH + vK + wL)N }
v' = v + V(uH + vK + wL)N
w' = w + TJT(uH+ vK + wL)N

The plane (hkl) is transformed into (h'k'l') by

h' = h + V(hK - kH)N + W(hL - lH)N }
k' = k + U(kH - hK)N + W(kL - lK)N
l '= l + U(lH - hL)N + V(lK - kL)N

(27/1)

(27/2)

in which N is a whole number and signifies the number of inter-
atomic distances by which two neighbouring glide planes are
displaced relative to one another.

The directions and planes for which the indices are retained
during glide can be readily recognized from these equations. The
glide plane is the geometrical location of all directions which remain
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invariable relative to glide, the zone of the glide direction contains
all planes whose symbol remains unchanged during glide.

28. Double Glide

z
:cyz

y
FIG. 41.-Double Glide with Common

Direction of Glide.

Owing to the symmetry of crystals, the plane and direction of
glide are not usually unique elements of the lattice. It may often
happen, therefore, that two or more crystallographically equivalent
glide systems will be equivalent geometrically, and so become
operative in plastic deformation. So far only the simultaneous
activity of two crystallographically equivalent systems has been
considered in detail.

The simplest case is that of glide in two directions in the same
plane. Double glide in thjs instance is gliding on the same plane,
with the bisector of the angle of the two glide directions serving as

direction of glide. The lattice ro-
tation which accompanies exten-
sion consists in a movement ofthe
longitudinal direction towards
the line of symmetry of the two
glide directions. The only exten-
sion formula to remain valid is

X (26/2), with which (26/1) con-
forms, provided that the angles
formed with the" resulting glide
direction" are now designated A.

The next case concerns the simultaneous operation of two glide
planes with a common glide direction (their line of intersection).
In the diagram shown in Fig. 41 the common glide direction coincides
with the y-axis (which is perpendicular to the plane of the drawing)
of the system of co-ordinates that is symmetrical to the two glide
systems. The resulting displacement (~y) of a point P is composed
of the two separate displacements. Let a again represent the glide
strain which is equal for the two systems; the glide displacements
are then given by the products anI and an2; and ~y = anI + an2
represents the total glide strain. If now the two expressions which
follow directly from Fig. 41 :

nl = r sin (IX + ~)
n2 = r sin (IX - ~)

are inserted for nl and n2, we obtain finally

~y = 2a sin IX • Z,
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i.e., the resulting movement is equivalent to a simple glide along the
x-y plane in the common glide direction, that of the y-axis.

The yz-plane, too, contains the common glide direction and lies
symmetrically to the two planes Tl and T2. Which of these two
planes of symmetry is to be regarded as the resultant glide plane
depends upon the direction of the imposed deformation. Deforma-
tion is accompanied by lattice rotation in the same way as in simple
glide; the extension formula (26/1), relating to the common glide
direction applies.

The third case to be discusscd arises when neither glide plane nor
glide direction is common to the two glide systems (Fig. 42). In
order to superpose the two glides in the case of an extension [(104),
(105)] we represent glide by means of a co-ordinate transformation
(106) which was given in Section 26. We transform the glides
which occur in the systems xyz and x'y'z' to a new rectangular

FIG. 42.-a-Bl'ass CrystaL Showing Double Glide (I03a).

system ~.~~. Thc position of the new axes in relation to the old
ones is given by thc two ma,trices of the direction cosines:

x y z x' y' z'
~ a) b1 Cl ~ a\ b'] c';
.~ a2 b2 c2 and .~ a' 2 b' 2 c'2
~ a3 b3 c3 ~ a'3 b'3 C'3

The changes in the co-ordinates due to glide were, in view of the
special position of the co-ordinate system,

r t1x = 0 { t1x' = 0i t1y = azo and t1y' = a'zo
L t1z = 0 t1z' = 0

These have now to be transformed into the new common system
of co-ordinates ~.~~. The changes t1~, t1.~, t1~amount to:

r t1~= a]t1x + b] t1y + c]t1z + a> t1x: + b\ t1y' + c'] t1z'
i t1.~= a2t1x + . . . + a 2t1x + .
L t1~= a3t1x + . . . + a'3~x' + .

F
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Since ~x, ~x', ~z, and ~z' = 0, the equations can be simplified to:

{
~~= bl~Y + b'I~Y'
~.~= b2~Y + b' 2~Y'
~~= b3~Y + b'3~Y"

The equations can be further simplified if the new system of
co-ordinates is symmetrical to the two glide systems. Let the
~-axis be perpendicular both to the Z and z' -axes; it is then the
line of intersection of the two glide planes (of the xy plane with the
x'y' plane). Let the 'I)~ plane bisect the angle between the two glide
planes. The Z-, z' -, "1)- and ~-axes then lie in a plane perpendicular
to ~ (Fig. 43). From these conditions there follow for the direction
cosines the relationships:

C3 = C'3 = 0
c2 = C'2

Cl = - C'I

(C1Z, C1Z')
( .q:"I)Z = .q: '~z')
( .q: ~z = .q:V)

bI = - b'I' b2 = b' 2' b3 = b' 3 (y-axes symmetrical to the '1)- ~ plane).
In this way

{

~~= bI(~y - ~y') = bI(azO - a'z'o)
~'I) = b2(~y + ~y:) = b2(azO + a',z',o)
~~= b3(~y + ~y ) = b3(azO + a z 0)'

Assuming that the glide strains in both systems are of the same
magnitude (a = a'),

I ~~= abI(zo - z'o)
~"I) = ab2(zo + z'o)
l~~= ab3(zo + z'o)

in which Zo and z'o are still to be expressed by ~, 'I),~. From the
above equations (c3 = C'3 = 0) we obtain Zo = cl ~ + C2'~,

hence

(28/1)

so that for simultaneous glide of magnitude a on each of the systems
we finally obtain the following formulre :

~~= 2ab1c2 . :; 1
~"I) = 2ab2c2 ."1) r
~~= 2ab3c2 .'1) J

If, when double glide begins, the axis of rotation is in the plane
"I)~, which is symmetrical to the two glide systems, then ~ = 0 and
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(28/2)

Ai'; = O. This means, however, that in the case of equal glide
strain in both systems the wire axis will remain always in the 'I)~
plane.l

The resulting movement can now be described in the same way
as for simple glide by introducing the resulting glide direction 't"

(Fig. 44), whose angle <J; to the -I)-axisis given by the expression

A~ btgw=-=--.:!
. A-I) b2

If e is the angle between the axis of the bar and the resultant glide
direction 't" then it follows from Fig. 44 :

l] _ sin eo
To - sin <

FlG.43.
O"ientation of
the New System
of Co-ordinates
in the Case of
Double Glide.

1]

It
FlG. 44.-Double Glide in the
New System of Co-ordinates.

•

From this extension formula for double glide it is again apparent that,
so long as the wire axis remains in the same plane during rotation, the
ensuing lattice rotation will follow the same law as applies to simple
glide, with the resulting glide direction assuming the role of the glide
direction. Just as the glide direction is attained by simple glide
only after infinite extension, so, too, in double glide the resultant
glide direction represents the final position of the wire axis for infinite
extension. However, the purely formal nature of this analogy can
be seen from the fact that a crystal whose longitudinal axis is
parallel to the glide direction cannot be extended; on the other
hand, if the longitudinal axis coincides with the resultant glide
direction, it can be extensible by any amount by double glide, without
change of orientation.

It is unnecessary to examine the formula by which glide strain

1 But if the wire axis is not originally in the plane of symmeky, then it
will move in a plane which is inclined towa"ds it .
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and extension are connected [cf. (99) and (107)]. For particulars of
double glide in compression, readers are referred to the literature
[(100), (l01)).

a

b
FIG. 45 (a) and (b).-Extended Zinc Crystals

with Markings.

29. Formation of Spurious Glide Bands
On the surface of extended crystals, in addition to the typical

glide bands, other elliptical
markings whose plane is
usually inclined to the wire
axis in a direction opposite
to that of the glide bands
(Fig. 45) are sometimes
observed. That this second
set of markings does not
represent traces of crystal-
lographic planes is shown
by the fact that, in con-
trast to the glide ellipses,
the eccentricity of thcse
ellipses increases with in-
creasing extension. A gco-
metrical consideration of

these markings reveals that they arc obviously due to the distortion
of grooves which originally ran circumferentially on the crystal
(growth defects) (94).1

The special case of "'I. = A (x = 0), C C,
which docs not restrict the generality ~

l

X

v- l Wfof the conclusions arrived at, is
illustrated in Fig. 46. This shows the
plane through the longitudinal axis of A 8
the crystal (lo or ll)' and the slip direc. FlG. 46.-0rigin of the Addi.
tion (AB). The plane BC of the groove tionall\Iarkings.
which ran originally perpcndicularly
to the longitudinal direction arrivcs by glide in the position BCl,

which makes the angle Wl with the longitudinal axis of thc extended
crystal.

From the triangles ABC and ABCl we obtain

~= d = sin (Xl + (,)1). _1_
lo cos "'1.0 sin Wl

1 These defects are, in general, found only on crystals drawn from the melt
(Czochralski method).
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Using the formula for the extension it follows that either

(29/1)

(29/1a)or

t _ sin2 XO - sin2 ~~l
co g UJI - 2' 2sm Xl

t d2 cos Xo - Vd2 - sin2 X~co g UJI = . .
sm Xo

These two formulffi give the angle between the plane of the groove
and the longitudinal axis of the crystal as a function of the original
position of the glide elements and their final position, or the amount
of extension. It will be seen from formula (29/1) and from Fig. 46
that for values of Xo in excess of 45° the plane of the groove will come
to lie once again perpendicularly to the longitudinal direction of
the crystal, namely, when Xl (which is always <xo) equals (90° - Xo)'
Consequently in the initial positions Xo > 45° the traces of groove
plane and glide ellipses coincide at the start of extension; whereas,
however, in the course of further extension the glide ellipses remain
inclined in the same direction, the plane of the grooves regains its
upright position, reverts again to the transverse position, and then
inclines in the opposite direction. If for the initial positions Xo < 45°,
then from the start of extension the plane of the groove, like the glide
plane, approaches to the longitudinal axis but in the opposite
direction.

B. MECHANICAL TWINNING

30. Model of Twinning
Viewed externally, mechanical twinning represents a type of

plastic deformation entirely different from that of glide. It is a
process by which portions of the stressed crystal discontinuously
take up positions which are symmetrical to a plane or direction in
the rest of the crystal. The symmetrical position of the two lattices
in the undeformed and deformed parts is essential to this process, but
not the symmetry of the external form. The latter occurs only
when the crystal is bounded by certain crystallographic planes.

The best-known example of mechanical twinning is provided by
the compression twins of calcite (Fig. 47). This type of deformation
also occurs extensively with metal crystals (Fig. 48).

Macroscopically, deformation twins are formed by simple shear:
plane layers glide by an amount proportional to their distance from
the plane separating the undeformed from the deformed part, i.e.,
the twinning plane. Fig. 49 illustrates this process by means of a
wooden model.
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The difference between twinning and glide appears clearly from
Figs. 50 and 51. The illustrations show the lattice plane that passes

FIG. 47 .-Calcite Twin, Produced by Insertion
of a Knife (BaumhauerJ.

through the direction of shear and is perpendicular to the plane of
shear. Whereas in glide the shear cannot amount to less than an

~<'

~~ ~ '" "~j"" t f "".

aZn

bCd

cBi

FIG. 48 (a)-(e).-Mechanical Twinning of Metal
Crystals.

interatomic distance in the direction of glide (identity translation),
the magnitude of displacement in twinning is usually no more than
a small fraction of a lattice spacing. As is apparent from glide
bands, the shear strain is by no means uniform over the whole
length of the crystal in the case of glide. In mechanical twinning,
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on the other hand, all planes in the deformed part which lie parallel
to the shear plane are identically displaced with reference to the
neighbouring plane. Consequently bands do not occur within a
twin lamella. In the case of glide, the shear can take place in both

a b

FIG. 49.-Model of a Crystal (a) before and (b) after Simple Shear, showing
the Mechanism of Twinning (According to MOgge).

directions (corresponding to the extension or compression of the
crystal), whereas in twinning the shear direction is polar. This
deformation process leads to a change in shape of definite type and

FIG. 50.

•
•

FIG. 51.

•

Movement of the Lattice Points in Glide and Mechanical Twinning (103).

magnitude, which is determined by the crystallographic nature of
the twinning elements.

31. Geometrical Treatment of Mechanical Twinning

The geometrical relationships between the deformation occurring
ill twinning and the twinning elements will now be discussed with
the aid of Fig. 52. The plane of the drawing is again the plane of
displacement, and the perpendicular twinning plane (K 1) intersects
it in the shear direction "1)1' The intersection of the unit sphere
with the plane of shear is also included in the form of a circle.
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FIG. 52.-Diagram Illustrating the Geometrical
Treatment of Mechanical Twinning.
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Twinning distorts the unit sphere into an ellipsoid of equal volume,
and the intersection of this ellipsoid with the plane of shear is shown
also. For the two extreme semi-axes of the ellipsoid, a and c, which
lie in the plane of shear, the relationship a . C = 1 follows from the
constancy of volume.

The shear plane (K1) changes ncither its shape (" 1st undistorted
plane ") nor its position in the course of deformation. On the other

hand, all other planes,
together with the direc-
tions not contained in
K1, become tilted. One
of the planes perpen-
dicular to the plane of
shear remains, similar
to Kl' as a circle (" 2nd
undistorted plane K2").

"1)2represents the inter-
sect of this plane on
the shear plane. The

amount by which a point at unit distance from the twinning
plane is displaced is termed the shear strain 8. It is related to
the angle 2rp between the two undistorted planes. It follows from
the triangle OAC and from the proportionality between gliding and
the distance from K1(AA1 = 8 . OC) that

2tf'rp = - .
8

The amount of shear is therefore fixed by the crystallographic
nature of the two undistorted planes.

Since mechanical twinning is a simple shear, the resulting changes
of length are again given by formula [(26/5) (108), (109)]. X*and
A*now denote the angles between the longitudinal direction and the
directions of K1 and '~1' and the glide strain a should be replaced
by the shear strain 8. The formula for twinning is therefore:

p=d=Vl+28.sinx*cosA*+82.sin2x*. (31/2)
o

The condition 28sin X* X cos A*+ 82sin2 X*= 0 gives the geo-
metrical position of the directions whose length remains unchanged
in the course of twinning. For these directions we first obtain
sin x* = 0, i.e., the 1st undistorted plane. The second solution

sin X* 2 sin X*yields - --", = -, or, employing equation (31/1) - --", = tg2rp.cos X·· 8 cos X"
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FIG. 53.-Change in Length in Mechanical
Twinning: Extension in the Unshaded,

Compression in the Shaded Portion.

31. Geometrical Treatment of Mechanical Twinning

However, as can be easily ascertained from Fig. 53, this is the
equation of the 2nd undistorted plane in its initial position.

With the aid of these two undistorted planes all the orientations
on the pole sphere are divided into four regions, of which each
opposite pair on twinning leads to either extension or compression.
Extension occurs for all the
directions contained in the
obtuse angle between K1
and the original position of
K2 (K02), and compression
within those contained in
the acute angle between the
two planes (cf. also Fig.
52).

Extreme values for changes
in length are obtained for
orientations in the plane of
shear (x* = A*), since out-
side this plane A* always
exceeds x*. From the differ-
entiation of the equation (31/2) in the case of x* = A*, we obtain
the orientation which leads to maximum extension or compression:

8 J8-2-
tgX\,2="2± 4+1 (31/3)

The amount of maximum extension or compression is obtained by
inserting (31/3) in (31/2). For this purpose, equation (31/2) is
transformed into

1
d = V VI + 28. tgX* + tg2X* + 82tg2X*1+ tg2X* .

It follows from (31/3) that s . tgX* = tg2X* - 1 so that finally
dl, 2 = ± tgx* . (31/4)

The choice of sign is fixed by the condition that d = ? must always
o

remain positive.
The maximum extension is therefore

. 8 J8-2dmax. extensIOn = "2 + 4" + 1

and the maximum compression

. 8 J8-2dmax. compreSSIOn= - "2 + 4 + 1

(3l/4a)

(3l/4b)

"
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For lo = 1 these two values represent the axes a and c of the
deformation ellipsoid. Their product is unity, as is required by the
constancy of volume.

The above formuhe show that the values of the shear strain (s)
are small, and in contrast to glide the amount of deformation by
twinning is therefore usually slight.

32. Possibility of Twinning and Transformation of Indices
Whereas a plane lattice represented by a net of parallelograms

can always undergo twilming, this is not always so 'with space
lattices. The condition which must be satisfied if mechanical
twinning is to occur in a space lattice can be obtained from the
following considerations [(llO), (Ill)]. If, after twinning, each
lattice point of the deformed portion is to have a corresponding
point of the original lattice mirror reflected along the gliding surface
(HKL), it should be possible before shear to join each pair of points
in the lattice by lines which are parallel to the direction '1J2[UVW]
and which are halved by the glide plane. Let r[mnpJ] and r[mIn1PI]]
be two points in a simple primitive space lattice, then the condition
which must be fulfilled if their connecting line is to run parallel to
[UVW] is :

(ml - m) : (nl - n) : (P2 - p) = U: V : W.

In addition the equation

HmI + Knl + Lpl = - (Hm + Kn + Lp)

indicates that the points on different sides are at the same distance
from KI. The solution of both equations according to m, n, and P
leads to

_ _ 2UHml + ~nl + LPI
m - ml HU + K V + LW

and two analogous equations for nand p.
Since mnp and m1nlPI must, according to definition, be whole

numbers, while UVW as indices of a direction have no common
factor, the denominator HU + KV + LW must be either ±l or
±2. Therefore this relationship between the indices of the shear
plane and the direction '~2 furnishes the condition for the possibility
of twinning in a simple primitive lattice; it must be correspondingly
modified for multiple centred lattices (lll).

In conclusion, the following particulars are given of the trans-
formation of indices for directions and planes which occurs with
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mechanical twinning (112). Let [UVW] and (HKL) be the indices
of "1)2 and Kl or ·/ll and K2; then, if p is a factor of proportionality
the following transformation formuhe apply:

The direction [uvw] is transformed into [u'v'w'] by

, Hu + Kv + Lw
pu = u - 2 U HU + KV + LW

, __ ? _Hu+Kv+Lw
pv - v ~ V H U + K V + LW

, Hu+Kv+Lw
pw = w - 2W HU + K V + LW

The plane (hkl) is transformed into (h'k'l') by

ph' = h(UH + VK + WL) - 2H(Uh + Vk + Wl) I
pk' = k(UH + VK + WL) - 2K(Uh + Vk + Wl) ~
pl' = l(UH + VK + WL) - 2L(Uh + Vk + Wl) J

(32/2)

(32/3)

From these equations it will be apparent that, generally speaking,
directions and planes change their indices consequent upon twinning.
The indices remain unaltered for those directions which lie in the
twin plane (Hu + Kv + Lw = 0) and for those planes which belong
to the zone of "1)2 (Uh + Vk + Wl = 0). In shear of type 2 (cf.
Section 33) the directions in K2 and the planes of the zone of "1)1

retain their indices.

33. Empirical Crystallographic Rules
Hitherto we have discussed the model and the geometry of

mechanical twinning. We will now examine briefly the crystallo-
graphic aspects of mechanical twinning and empirical data concerning
observed twinning elements.

Glide plane Kl or glide direction ·~l (or both together in cases of
higher symmetry) are simple, rational lattice elements. Polyhedra
with rational faces are also bounded after twinning by planes with
rational indices.

If Kl is rational, it is customary to speak of twinning of type l.
The deformed part of the crystal is the reflexion of the undeformed
part with respect to the twinning plane. In this case we find that
not only K 1 but also ·~2' which is the intersection of the second
undistorted plane with the plane of twinning, is also a rational
lattice element. Kl and ·~2serve to characterize twinning crystallo-
graphically. They define the plane of twinning, the direction of
shear, the magnitude of shear and the second undistorted plane.
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If '~1is rational, the twinning is said to be of type 2. The de-
formed part of the crystal, compared with the original crystal, has
now rotated 1800 relative to the direction of shear. In this case
K2 is rational as well as '~1' Consequently both these elements are
used to characterize a twinning of type 2, which in any case is
observed only with crystals of low symmetry. The other elements
of shear are then determined in the same way as described above.

The choice of twinning elements is also restricted in so far as K 1

cannot be a symmetry plane in twinning of type 1 (neither can it be
perpendicular to an even-numbered axis of rotational symmetry);
while in shear of type 2, '~1 cannot be a digonal axis, since it is only
as a result of twinning that this lattice clement acquires the character
of a symmetry element.
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RESULTS OF SPECIAL INVESTIGATIONS

CHAPTER VI

PLASTICITY AND STRENGTH OF METAL CRYSTALS

Chapter V contained a description of the general principles
governing the change in shape of crystals during plastic deformation,
together with the resultant changes in orientation. Both mechan-
isms of deformation-gliding and mechanical twinning-were
discussed. We now turn to the technique and the results of experi-
ments on the plastic deformation of crystals; for the present, we
shall confine ourselves to crystals which, owing to their extreme
ductility, provide excellent experimental material. The result of
investigations on the plasticity and strength of salt crystals will be
given in the next chapter.

A. ELEMENTS OF GLIDING AND TWINNING

34. Determination of the Elements of Gliding
The elements used in the characterization of gliding-the glide

plane (T) and the glide direction (t)-can be determined in various
ways.

It is not proposed to discuss here the goniometric and microscopic
methods applicable to polyhedrons with plane faces. Instead, a
description will be given of the new methods developed for opaque
crystals which are not bounded by plane faces. These methods can
be considered under several headings according to the conditions
governing the experiment. When applying them, however, certain
modifications or combinations are often necessary.

To take the simplest case first, let us consider a crystalline
material which admits of substantial plastic extension, accompanied
by the appearance of glide bands or striations indicative of the
operation of a single glide system (cf. Fig. 35). In this case the glide
plane (T) can often be found by means of a Laue photograph (with
the incident beam perpendicular to the plane of the striation). If
the glide plane is perpendicular to a symmetry axis of the crystal,
the resulting symmetry of the Laue photograph will usually suffice
to index the glide plane (Fig. 54). T is more difficult to determine
when its normal does not coincide with a symmetry axis, since an
exact evaluation ofthe Laue photographs is often greatly hampered by
the pronounced asterism caused by previous extension (cf.Section 59).

In crystals which have been substantially stretched, the direction
of slip (t) can be usually determined by means of a rotation photo-

77
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(a) Zn crystal: 6-fold picture: l' = (0001); (113).

Di"ection oj glide

FIG. 55.-Adjustment of
the Crystal in Order to
Determine the Direction of
Glide from Rotation Photo-

graphs.

I

(b) Al crystal extended at elevated temperature;
4·fold picture: T = (001); (117).

FIG. 54 (a) and (b).-Determination of the Glide
Plane (T) from the Symmetry of the Laue

Photographs.

graph (132). The position of t is indicated approximately by the
intersection of T with the symmetry plane of the crystal band which
is normal to the plane of the band and which contains its longi-
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tudinal axis. Consequently the crystal is adjusted for the rotating-
crystal photograph so as to ensure that the intersection of the glide
plane with the median plane of the band to which reference has

'\ \ \ \

1 #

(a) Sn crystal; t = [001]; (114).

I I I I I

1. Layer line Equrltor 1. Layer line

(0002}-

(1010}-

(lOH}- I'
(1012)-

#'

(1013)- .,.

(0001}- --
--

•

-

r

(b) Cd crystal; film a2'is = incidental (c) Al crystal; extended hot; t = [110];
beam; t = [1120]; (131). (117).

FIG. 56 (a)-(c).-Determination of the Direction of Glide (t) from Rotation
Photographs.

already been made, forms the axis of rotation (Fig. 55). Thus the
crystal wire describes a cone round the direction of glide, with a
cone angle that corresponds to the small angle of inclination between
T and the wire axis. Fig. 56 contains a few rotation photographs
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FIG. 57.- Determination of the Direction of Glide
from the Lattice Rotation in the Course of
Extension; lVIgCrystal at >225° C. [see (129)].

"~
"""""\

\
\
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which have been obtained in this way, and which, evaluated by
means of the Polanyi layer-line relationship (formula 21/2), plainly
reveal the crystallographic nature of the glide direction.

So much for the X-ray method, which supplies direct evidence of
the elements of glide. We shall now consider a more indirect
method for the determination of the glide direction. In this con-
nection reference will be made to the change in orientation caused
by glide during extension, which was discussed in Section 26. The
change was found to be a movement of the longitudinal axis of the
crystal towards the operative direction of glide. Consequently the
method of obtaining t consists in dctermining that direction to which

the longitudinal axis
approaches as exten-
sion increases-having
first ascertained the
crystal orientation at
various stages of exten-
sion. The resultant
direction of glide can
be checked by applying
the formula for ex-
tension (26/1), which
relates the amount of

-. OlgAI extension to the change
of the angle between
the longitudinal axis
and the direction of
glide. Fig. 57 shows

the application of this method to a magnesium crystal which has
been extended at elevated temperature. A digonal axis of type 1
was found to be the effective glide direction both for the initial glide
in the direction of the basal plane and for the subsequent glide in
the direction of a pyramidal plane.

Similarly, it is possible to determine thc glide plane from the
lattice rotation during compression, since in this case the change of
orientation consists in a movement of the longitudinal direction
towards the normal of the glide plane (checking the compressive
strain by the formula 26/7). Tensile tests afford no direct indication
of T ap.art from the fact that T contains the glide direction and must
therefore belong to the zonc of t. If, however, we make the obvious
physical assumption that, where glide systems are crystallograph-
ically equivalent, that system will operate in which the resolved shear
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FIG. 58 (a) and (b).-Indirect Determination
of t.he Glide Elements of Hexagonal Crystals
from the Lattice l'totation in the Course of

Extension.
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stress is a maximum 1 it will be seen that in certain circumstances
the glide planes can be determined from study of the lattice rotation
alone. With the further assumption that the glide plane will have
low indices, the whole range of orientations can be subdivided in
such a way that the
shear stress within each
division is greater in one
glide system than in the
remaining crystallograph-
ically equivalent systems.
If, on this assumption,
the glide system which
invariably operates is that
in which the shear stress
is a maximum, then the
lattice rotation which
accompanies extension in
each division, and con-
sequently in the total
range of orientation,
is established. A com-
parison of the experiment-
ally ascertained lattice
rotation with the changes
of orientation which have
been calculated on various
assumptions about T,may
serve to determine the
glide plane.

An example ofthe appli-
cation of this method is
shown in Fig. 58, in which
the lattice rotation for the
extension of close-packed

hexagonal crystals is given (~= 2J~= 1.633). The diagram is

based on a direction of glide parallel to the digonal axis, type 1, and
on glide planes parallel to the basal plane (0001), prism type 1
(1010), pyramidal plane 1, types 1 and 2 (1011) and (1012). Basal
glide can be readily distinguished from the other three types by the
fact that in the wholc of the orientation triangle the wire axis moves

1 It will be shown in Section 40 that this assllmption is entirely j Ilstified.
G

It
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towards the digonal axis type 1 (A) in a corner of the triangle
(Fig. 58a). On the other hand, if one of the other three glide planes
becomes operative the wire axis tends towards a digonal axis type 1
(B) lying outside the triangle for most initial orientations. With
prism glide this occurs in the whole of the orientation triangle,
whereas with pyramidal glide (Fig. 58b), sections adjacent to the
hexagonal axis involve an initial rotation towards (A). Byexamina-
tion of the behaviour of crystals in the area F it is possible to dis-
tinguish between the two pyramidal glide planes. Whereas with
basal glide a considerable degree of extension will result in an
approach to a digonal axis type I (A) in the final stage, with prism
and pyramidal glide a digonal axis type II (0) represents the final
orientation of the longitudinal axis of extended crystals. It is
achieved in this case by double glide on two equivalent systems.

In Section 40 we shall indicate a further possible method for
determining the glide plane, by examining the dependence of the
yield point upon orientation. The points which refer to this are
shown in Fig. 58 as Ba, Pr, Py1 and Py2, which indicate the initial
orientation for minimum values of the yield point.

G. 1. Taylor and his associates in their investigations of the plastic
deformation of metal crystals (116) adopted a method entirely
different from that described above.

In this method it is not assumed that deformation is due to
crystallographic glide; instead, the mechanism of deformation is
deduced from changes in the shape of the test piece, or of the systems
of lines drawn upon it. This can be illustrated by a compression
test carried out on a cylindrical disc (115).1 Two groups oflines are
scratched on the compression surface of the plate, and their distor-
tion under compression is observed. The axes of co-ordinates are
such that the x-axis runs parallel to the lines, the y-axis passes at
right angles to them through the compression surface, while the
z-axis lies normal to the compression surface (parallel to the direction
of compression). Let the co-ordinates of a given portion before and
after deformation be (xoYozo) and (x1YIZI)' The transformation
equations will then be 2

Xl = axo + lyo + (Lzo

Y1 = myo + vZo
Zl = YZo

1 Application of this principle to the tensile test is discussed in (121).
2 Owing to the particular choice of the direction x, y, is independent of xO'

Planes parallel to the compression surface preserve this parallel position;
consequently Zl depends only on Zo and the degree of compression.
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x

FIG. 59.-Stereographic Representa-
tion of the Unstretched Cone Surface

of a Compressed Al Crystal (115).

Cl, l, [I., m, v and y are constants which can be calculated from the
change in shape of the test piece and the distortion of the lines.

It is now necessary to establish the geometrical locus of all those
directions which have not altered their length during deformation.
This is governed by X0

2 + Yo2 + Z02 = X1
2 + Y12 + Z12•

Adoption of the above transformation formuhe gives the equation
of the "unstretched cone" in the initial position (cone-surface
type 2). After introducing polar co-ordinates (8 = the angle
between the observed direction and the z-axis, </> = the angle between
the projection of this direction on the xy-plane and the x-axis), the
equation of the unstretched cone surface is obtained in the form of
f (8, </» = O. With the help of this formula the 8 values appropriate
to the individual </> values can be
calculated, and the unstretched
cone surface expressed in a stereo-
graphic projection by using the
xy-plane as projection plane. Itis
usually found that the unstretched
cone surface has degenerated into
two planes and that the deforma-
tion is therefore a plane one.1

Which of the two planes is the
glide plane (T) can be determined
in various ways. 1.A determina-
tion of the orientation of the cry-
stallattice with respect to the two
planes before and after deforma-
tion reveals that only one of them (the one corresponding to T) retains
its orientation relative to the crystal axes. 2. If glide bands occur
during deformation these will usually suffice,even if only indistinct, to
distinguish between the two planes. 3. The initial state and two
stages of deformation are examined. The planes that remain un-
deformed are determined after the first and second deformation.
One of them (T) will have retained itR crystallographic character.

The direction of glide (t) is shown by this method to be that
direction which is perpendicular to the intersection of the two planes
in T (cf. the analogous geometrical discussion in Section 31 of the
two undistorted planes in mechanical twinning).

As an example of the use of this method, Fig. 59 shows a stereo-

I If xo, Yo and Zo are eliminated from the above condition, in place of Xl' Yl
and Zl> then we obtain the equation of the unstretched cone surface after
deformation.
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graphic projection of the unstretched cone surface of a compressed
aluminium crystal, which clearly reveals degeneration into t,vo
planes. One of them corresponds to a (Ill) plane of the crystal, as
will be seen from the coincidence of its normal (A2) with a [111]
direction (A). The direction (B2) contained in this plane, and
separated by 90° from the intersection of the two planes, very nearly
coincides with a [101] direction (B). Consequently these two lattice
elements, the octahedral plane (111) and the plane diagonal [101],
have been recognized as the glide elements of the aluminium crystal.

By means of the unstretched-cone method it is also possible to
analyse that type of crystal deformation (already discussed in
Section 28) in which the two glide systems are equally favourably
placed in relation to the direction of applied stress, although in this
case the cone surface normally will not have degenerated into two
planes. It is found that the deformation takes the form of double
glide along the two equally favoured glide systems.

35. The Glide Elements of Metal Crystals
The results of existing determinations of the glide elements of

metal crystals are given in Table VI. The last column contains the
cleavage or rupture planes which have been observed in the crystals.

With cubic face-centred metals only octahedral glide occurs at
room temperature. The position with regard to cubic body-
centred metals is not yet clear. In the case of cx-ironin particular,
the existence of a "pencil" -glide in which only the direction of
glide is supposed to be crystallographically fixed (121) 1 has been
indicated. However, later work [(122), (123)] makes it seem highly
probable that in this case too thc selection of both glide elements
proceeds strictly along crystallographic lines. In hexagonal metals
the basal plane has hitherto always been found to be a unique glide
plane with the three digonal axcs type I as glide directions.

In the case of the tetragonal ~-tin crystal, crystallographicaIly
non-equivalent glide systems are already found at room temperature.
However, glide T = (110), t = LOOl] is greatly preferred. Among
the rhom bohedral metals only bismuth exhibits extensive glide.
The best glide plane in this case is the basal plane, although the three
equivalent (11I)-planes appear also to occur as glide planes. It is
not yet known for certain whether, in addition to the [101] direc-
tions, the [101] directions are also possible glide directions. The

.1 This mechanism is said to apply, within" certain range of orientation, to
cubic body-centre,! ,a-brass also. The other Ol'ientations give glide with
'1' = (101), t = [111] (125).



• TABLE VI
Glide Elements and Cleavage Planes of Metal Crystals

Glide elements. Close packed.

Metal.
Lattice type,

At 20°.
Additional at Lattice Litera-

crystal class. elevated temp. Lattice ture. Cleavage planes.
planes. direc-

'P, t. T. I t.
tions.

-------- ---- ---- ----- --------
fmm 4.50° C.

Aluminium.

} (111) [101] f (100) [011] 1. (lll) I. [1011 (ll6), (117) -
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plasticity of tellurium crystals merely takes the form of a slight
flexibility, due to glide along the (112) plane, which is also a cleavage
plane (prism plane type I in the hexagonal representation).

A study of Table VI reveals a clear connection between capacity
for glide and density of packing-a connection which has long been
recognized (137). It is invariably the most dense atomic row that
serves as a direction of glide, and usually the planes of highest
atomic density are the glide planes. Attempts to explain the glide
elements in terms of lattice theory have so far been unsuccessful:
considerations of glide in a packing of spheres with cubic face-centred
and cubic body-centred symmetry threw no light on the glide
elements which had been observed in these crystals (138); deter-
mination of the modulus of shear of various planes revealed that
the operative glide elements a,re by no means characterized by a
minimum value (139).

In no case did an increase in the temperature of the test lead
to a disappearance of the glide elements which are operative at
room temperature; on the contrary, in many cases new glide
systems appeared. It is quite likely that a detailed investigation of
plastic deformation at temperatures near the melting point would
reveal new glide systems in many other cases.

Although most of the glide elements of metal crystals have been
determined from static tensile tests, it should be specially noted that
with all other types of stressing as well [compression, torsion,
dynamic and alternating stressing, cf. (140)] the same glide elements,
arising from the nature of the lattice, become effective.

In conclusion, it should be mentioned that the glide elements
observed in the crystals of pure metals are always observed in the
ex solid solutions of the respective metals.

36. Manifestations of Glide

Having enumerated the glide elements observed in metal crystals
we will now describe the occurrence of these elements under different
types of stress, and the resulting lattice rotations.

The lattice rotation which occurs in an extended crystal where a
single glide plane is present (hexagonal metals) is shown in Fig. 58a.
If the initial orientation is near a prism plane of type Il, a second
and only slightly less favourable digonal axis type I becomes
operative as a glide direction in the initial stages, so that glides tarts
along the same plane in two directions (see Section 28). If the
longitudinal axis lies exactly in a prism plane type Il, both glides
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persist, and the longitudinal axis of the crystal approaches increas-
ingly a digonal axis typc II, to which the two operative directions of
glidc are symmctrical. On the other hand, where the two glide
directions are not equally favourable, the one which is preferred
geometrically soon prcdominatcs, and the subsequent change in
orientation proceeds as shown in Fig. 58a (129). The change of
orientation asaresult ofpyramiual glidewhich occurswithmagnesium
at high temperatures has already been discussed (Fig. 57). The
surface bands on the crystal which result from the new glide and the

(a) In addition to the coarse markings resulting from basal
glide, two additional systems of markings caused by

pyramidal glide can be seen.

(b) Recking due to pyramidal glide.

FIG. 60 (a) and (b).-J\Ig Crystals Stretched at Elevated Temperatures (129).

change in the shape ofthe crystal (necking ofthe band) are shown in
Fig. 60.

There are twelve equivalent glide systems available in the cubic
face-centred metals (four octahedral planes, each with three face
diagonals). The choice of system in the case of extension depends
upon the direction of the tensile stress in relation to the crystallo-
graphic axes. As was explained at length for the case of aluminium
(116), glide always occurs along the system subjected to maximum
shear stress.1 Fig. 61 indicates the choice of available glide systems
for different directions of stress. Each triangle which, by the
application of symmetry operations characteristic of the crystal,
results in the whole of the orientation range being covered, is
characterized by a definite most favourable glide system.

The lattice rotations which accompany plastic deformation III

1 Calculation of the shear stress is dealt with in detail in Section 40.



88 Plasticity and Strength of Metal Crystals

extension can be illustrated by means of an experimental example
[aluminium (Fig. 62)] and by Fig. 63 (which represents a section of

FIG. 6L-Choice of the
Operative Octahedral
Glide System for the
Extension of Cubic
Face-cen trcd Crystals

(116).

A-D: poles of the glide
planes.

I-VI: glide directions.

Fig. 61). In the heavily outlined orientation area H\AI, the most
favourable glide system is B IV. Consequently, the lattice rotation

FIG. 62.-Reorientation
during Extension of an

AI Crystal (116).
X = orientation of the
longitudinal axis after
extension at the stated

amount (%).
/ = orientations calcu-
lated on the assumption

of simple glide.
[Formula (26/1).]

./If

FIG. 63.-Lattice Rotation in the Course of
Extension by Octahedral Glide.

which accompanies extension is indicated by the arrows pointing to
IV. The glide direction IV, however, is not attained, for when the
longitudinal axis enters the dodecahedml plane W lA a second glide
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system (Cl) becomes geometrically equally favourable. The double
glide along two systems which now sets in leads to a movement of
the longitudinal axis in the symmetry plane W1A towards the
bisector [112] of the operative glide directions. The longitudinal

FIG. 64 (a)-(d).-Glide Bands on Al Crystals Extended at 4000 C.
(a) and (b) simple and double octahedral glide. (c) and (d) cubic glide;

viewed perpendicular and parallel to the plane of the original band.

axis of crystals extended at room temperature tends towards this
direction.

Deviations from the normal case described above occur in the
first place when the longitudinal axis of the crystals lies originally
in a symmetry plane, so that from the outset two or more systems
are equivalent [(141), (142)]. Secondly, deviations are observed at
elevated temperatures. In this case, for initial orientations in the
area AI [112] of the orientation triangle (Fig. 63), an aluminium
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t

T
FIG. 65.-Reorientation of
an Al Crystal as a Result

of Compression (144).
• = as observed.
X = as calculated from
formula (26/7) on the basis
of the stated percentages

of compression.

specimen, in addition to octahedral glide, will undergo cubic glide
according to the most favourable system TV1V. Under the influence
of these two glide systems the longitudinal axis tends towards a
final position parallel to the body diagonal (A). The sequence of
glide bands is shown in Fig. 64, a to d. Crystals in the orientation
area HT II [112] also exhibit irregular behaviour at elevated tempera-

tures. In this instance several octahedral
glides appear to become active even before
the "symmetrals" are attained, thus
resulting in a movement towards the cube
edge HTI [(117) cf. also (141) and (143)].

In the compression of aluminium cry-
stals, too, that octahedral glide system in
which the rcsolved shear stress is a maxi-

/P1tl mum is the first to come into operation
(144). The subdivision of the entire field
of orientation into regions of equally
favourable glide systems is the same as in
the tensile test (Fig. 61), since it is only the
sign of the stress that has changed. As
already indicated in Section 26, however,
the lattice rotation which accompanies the
operation of an octahedral glide system
is not that obtained by an inversion of
the sign hom the rotation in extension.
It rather consists in a movement of the

"longitudinal direction" towards the normal to the operative
glide plane. This is illustrated in Fig. 65.

37. Determination of Twinning Elements
Like the glide elements, the twinning elements (twin plane ]{l'

and direction "1)2for twinning of type 1; 2nd undistorted plane ](2

FIG. 66.-Mg Crystals with Deformation TwinsaboutK, = (1011);
(149).

and shear direction "1)1 for twinning of type 2) can be determined by
various methods. In principle, the problem is solved when the
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(a)-Laue Photograph Perpendicular to Kl.
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pole figure about (lOll).

FIG. 67 (a) and (b).-Determina.
tion of Twin Planes from Laue
Photographs: lVIgCrystal (149).

indices for several (at least two) crystallographic planes are known,
both before and after twinning. With plane crystal boundaries they
can be determined by a microscopic and goniometric measurement
of the twin lamellre. The transformation formulre (32/3), resolved
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with respect to (HKL) and [UVW] then furnish the crystallographic
indices of the twi1ming elements.1

However, in the case of the metal crystals with which we are mainly
concerned there are as a rule no crystallographically bounded
polyhedrons. We therefore propose to describe the methods to be
applied in cases where the crystal "habit" is absent. These
methods, however, only lead directly to the first undistorted plane K1.

K1 can be determined directly in ::111 cases where a Laue photo-
graph is obtainable at right angles to the twi1ming plane. For this
it is necessary that the position of the plane should be adequately
defined by twin bands. Figs. 66 and 67 illustrate the use of this
method in establishing the (lOll) plane as the twi1ming plane of
magnesium. Difficulties may arise owing to the pronounced dis-
tortion of the interference spots (asterism, see Section 59) which
sometimes makes the evaluation of the diagrams impossible.

A second way of determining K1 (or '/)1)by X-rays is open in cases
where it is possible to produce in the crystal a twin lamella so
broad that not only the orientation of the initial crystal but also that
of the twin can be determined, with respect to the same system of
co-ordinates, by means of Laue photographs or photographs taken
with an X-ray goniometer. The relative orientation ofthe two lattices
is determined by the law of twinning: they arise from each other by
refiexion on the twinning plane K1(or by rotation through 1800 round
the direction of glide '1]1)' If then the pole figures for the initial and
the twinned positions are plotted in the same stereographic plot, it will
be found that for twinning of the first type the position of one plane
will be identical in both parts of the crystal, and this will correspond to
K l' Refiexion at its pole transforms corresponding directions into one
another. In case of a twinning of the second type a rational crystal
direction '1]1is common to both lattices which transform into each other
by rotation through 1800 round this direction. It is easier to find the
twinning element in crystals containing unique sets of crystallographic
planes; in such cases the twinning element bisects the angle between
the two positions of the unique plane. Although this method has
not so far led to the discovery of new twinning elements, it has in
many cases confirmed previous results [(145), (146), 147)].

Another method which has been successfully used for determining
K1 involves measurement of the angles of twinning lamellm with
respect to a crystallographically known system of co-ordinates (148).
On a specimen of very coarse-grained material or a single crystal, two

1 This is conditional on the second plane not being also in the zone which
is determined by the first plane when in the original and twinning position.



FIG. 68.-Determination of J{l by
Measuring the Traces of Twin
Lamelhe on Two Polished Surfaces

of the Crystal (148). Be Crystal.

'"
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fitces are ground inclined to each other at a known angle (in the
simplest case they may be perpendicular to each other), and then by
a slight compression twinning is produced in individual grains.
After the surfaces have been polished again the angles between the
twin and the reference planes can be measured, as well as those
between the twin planes, should several sets of twins appear. It is
a condition of this method that the same twin lamella must be
recognizable on both polished surfaces (see Fig. 68). If the positions
of the reference planes with respect to the crystallographic axes are
known, the positions of the twin planes with reference to these axes
can also be determined. If there are several sets of equivalent twin
planes, their crystallographic nature is already revealed by the
angles between them.

The three methods described above for boundaries which are not
well-defined crystal planes, lead
solely to the first undistorted
plane X l' The second of these
methods is the only one that is
capable of indicating, in addition,
the direction of glide '~1 and
thus also the plane of the shear.
But with crystals characterized
by a high degree of symmetry,
as in the case of metals, the
following consideration will lead
to the determination of '1)1 in
the other methods also. If there is a symmetry plane at right
angles to X l' this plane must coincide with the plane of
shear, and so its intersection with Xl must be '~1' Otherwise
the symmetry plane which was originally present would lose
this property in the twinned portion. This is immediately
obvious from the fact that in planes at right angles to the plane of
shear only those directions which form equal angles with the plane
of shear suffer equal distortion during twinning. If there were in
addition a symmetry plane at right angles to Xl and inclined towards
the plane of the shear, directions symmetrical in relation to this
plane would also suffer equal distortion, an assumption which can-
not bc reconciled with the mechanism of twinning.

If in addition to Xl the indices of a direction or a plane are known
before and after twinning, the indices [UVW] of the direction '~2'

together with the second undistorted plane and the shear strain,
can be calculated from the equations (32/2) or (32/3).
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In very elementary cases it should be possible, if ]{1 and -/l] are
known, to determine the second undistorted plane ]{2 and "1)2 by
observing the movement of the lattice points in the plane of shear
(cf. the following section).

38. The Twinning Elements of Metal Crystals
A summary of the elements of shear which have so far been

observed in the mechanical twilming of metal crystals is given in
Table VII. In addition to the two undistorted planes the amount

TABLEVII

Shear Elements of Metallic Crystals
-.

Lattice 1st 2nd
undis- undis-

Metal. type, torted torted Amount of Literature.crystal plane, plane, shear, 8.
class.

K1· ]( ..
-----

a-Iron Cubic space (112) (112) 0·7071 (150)
centred Oh (= 1/2V2)

Beryllium . (10!2) (1012) 1 0·186 (148)
Magnesium. (10!2) (1012) 1 0-131 (148)lHexagonal (lOP) (151)
Zinc close (1012) (1012) 0-143 (148, (152)

J

packed
= (c/a)' - 3) tDOh c/aV3

Cadmium (1012) (1012) * 0·175 (148)

,B-Tin (white) Tetragonal (331) (lIT) 0·120 (153)
D.h

Arsenic Rhombo- ?(O11) (100) 0·256 (154)
Antimony hedral (011) (100) 0-146 (155), (156)
Bismuth D3d (011) (100) 0·118 ( 156)C r= ;i~o=/~ +

* In these cases K. has not yet been determined. In line with the behaviour
of the Zn crystal, (1012) has been adopted as the 2nd reference circle and used
for the calculation of 8.

t c and a = lengths of axes.
t a = angle of the rhombohedron.

of the shear is also indicated. The table contains no particulars
of the numerous instances of reerystallization twins i~ metals; these
occur frequently during recrystallization after previous cold
working.

The results of quantitative investigations on cubic metals arc
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FIG. 69.-Simple Shear of Cubic Face-
centred Crystals having X, = (111) (Plane

of Shear).

38. The Twinning Elements of Metal Crystals 95

available so far for body-centred et-irononly. Here the two undis-
torted planes are crystallographically equivalent, and so, too, are
the direction of shear and 'r,2 ([I11J-directions). When K1 and K2
or "1)2 and '1)1 can be interchanged, the shears are said to be reciprocal.
If twinning occurs on several planes, internal cavities are formed:
Rose's channels [(157), (158)]. These cause an increase in volume
which may be substantial, and which in the case of iron may
amount theoretically to as much as 50 per cent. (159). Although
mechanical twinning has been repeatedly observed with cubic
face-centred metals [see for instance (159a)] it has not yet formed the
subject of systematic investigations. However, it is possible that
in this case K1 is identical
with the twinning plane
(111), which is always
observed with recrystalliza-
tion twins. This assump-
tion points to (110) as a
plane of twinning, to '1)1 =
[112] and, in accordance
with the movement of the
lattice points in the plane
of shear as shown in Fig.
69, to K2 = (111), "1)2 =
[112] and s = 1/20 =
0·7071 1 [cf. (138)].

In the case of the hexagonal metals, twinning has hitherto been
observed to occur on a pyramidal plane type I, order 2. Here we
have a single glide plane in contrast to six planes of twinning. An
exact determination of K2 is available for the zinc crystal only, for
which, apart from the direct determination of K1, it was also possible
to ascertain the indices of a plane (basal) before and after twinning.
The particulars of K2 and s in other cases have hitherto been
inferred from analogy only. A consideration of the movements of
the lattice points in the plane of displacement shows that in the case
of the hexagonal metals, twinning is by no means a simple shear
with the stated strain (s). Only a quarter of the lattice points are
conveyed by this movement into the twin position. The remainder
have still to carry out additional displacements towards or parallel
to K1 [(160), (152)]. With magnesium crystals in rare cases the
pyramidal plane order 1 has been observed as a twinning plane, in

1 These provisional shear elements of the cubic face-centred metal crystals
fulfil the conditions of twinning for this type of lattice .

•
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FIG. 70.-Change in Length as a Function of
Orientation in the Case of Mechanical Twin-

ning of Zn Crystals (163).
I-VI, poles of the twin planes.
A: I-VI, compression.
B: 11, Ill, V and VI, compression;

IV, extension.
0: Il and V compression;

VI, extension.
D: I-VI, extension.

39. Operation of Mechan-
ical Twinning

Now that particulars
have been given of the
elements of twinning ob-
served with the various
metals, we will proceed
to a description of their
operation under various
types of loading.

I and First we must deal
I, Ill, IV and with the sign of the

change in length due
to twinning, since, owing

to the polarity of the directions of glide, either only extension
or only compression, according to the orientation, can occur
in the direction considered (see Fig. 53). Fig. 70 represents a
subdivision of the orientation field of the zinc crystal, based on
its six twin planes (1012). Directions at angles of between 0°
and approximately 50° to the hexagonal axis are shortened by
twinning on each of the six planes; while directions approximately at
right angles to the hexagonal axis undergo extensions. A transition
between the two is found in orientation regions in which some of the
twinning planes produce extension and others compression. The
same applies to cadmium crystals.

96 Plasticity and Strength of Metal Crystals

addition to the pyramidal plane of type 1, order 2. The tetragonal
lattice of white tin is not capable of twinning with the elements
mentioned above (161), so that here, too, the actual movement of
the lattice points must differ substantially from a simple shear.
Similarly the individual atoms of rhombohedral bismuth (and
antimony) follow no straight line when twinning. On the other
hand, the movement of the centres of gravity of pairs of co-ordinated
atoms on the trigonal axis corresponds to simple shear (162).

Already this brief description confined to metal crystals shows
how complicated are the
circumstances in mechan-
ical twinning - a fact
which is abundantly con-
firmed by the numerous
observations on salt cry-
stals.
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The change of shape is just the opposite for the important group
of hexagonal crystals having an axial ratio cia of approximately

Operative ](1 plane:

1, 2, 7, 8: extension occurs in
the whole of the orientation
region.

3, 4: compression in the whole of
the region.

5, 11: in EBG extension, in ABE
compression.

6,12: in EBDG extension, in ADE
compression.

9, 10: in BGD extension, in AGD
compression.

•

FIG. 7l.-Mechanical Twinning of a-Fc. Orientation Regions in which
Extension and Compression Occur. J( L Planes Numbered 1-12 in

Accordance with Fig. 11.

FJG. n.-Change of Orientation with the Twinning of Zll.

(N.B.-In the text, 15 = 0.)

1·63 (Mg, Be, etc.). In this case the hexagonal axis makes an angle
of more than 45° with the twin planes (and, on the very probable

H
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(a) Unetched crystal.

assumption of a reciprocal shear, also with the second undistorted
planes), which means that the hexagonal axis and the adjacent
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(b) Etched crystal.

FIG. 73 (a) and (b).-Secondary Basal Glide in the Twin Lamellae of Zn
Crystals. Viewed Perpendicularly to the Plane of the Band Resulting

from Primary Basal Glide.

99
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directions are extended by twinning on (1012). As a rule, any
twinning process that produces extension with zinc (and cadmium)
leads to compression, and vice versa. Crystals with an axial ratio
of cia = V3 form the boundary between these two groups of
crystals exhibiting opposite characteristics. Twinning on a (1012)
plane is impossible in this case, since the intersection of the plane of
displacement with the hexagonal cell would represent a squa1'e of
the length of the side av3 = c, with a diagonal in the direction
of movement.

With body-centred ex-ironhaving ](1 = (1l2) and ](2 = (1l2) we
obtain, for the twelve available twin planes, the subdivision of the
basic triangle shown in Fig. 71. In this case there are no areas in
which the formation of twins on all twin planes results exclusively
in either extension or compression. The directions [012] and [1l3]
are the corners of the resulting subdivisions.

Contrary to glide, mechanical twinning produces no continuous
change of orientation; it transfers the lattice discontinuously into a
new position. Fig. 72 illustrates this re-orientation, again for the
case of the zinc (cadmium) crystal. The crystallographic system of
co-ordinates is retained in this diagram. If the orientation of a given
direction in the initial state is 60, then its position after twinning
(01 . . . . . 06) is obtained by reflexion on the six (1012) planes.
The choice of the initial position 00 results in a shortening of the
direction considered in two of the twins (62 and (5), and a lengthening
in the other four.

Owing to the small extent of plastic deformation by twinning, its
immediate importance for large-scale deformations of crystals is
slight. Indirectly, however, and especially where hexagonal crystals
are concerned, it can exert an important influence on plasticity.
Owing to the characteristic swing-over of the lattice, a glide plane
that is unfavourably situated to the direction oftension can suddenly
adopt a position very favourable to further glide (e.g., 01' ()3' 64 and
()6 in Fig. 72). Thus further appreciable increases of plastic deform-
ation by glide, which otherwise would have been impossible, are
facilitated by the conditions created by mechanical twinning. Zinc
and cadmium crystals illustrate this very clearly [(148), (152)].
The "secondary extension", a new glide which occurs after the
principal extension by basal glide has become exhausted, rcpresents
a basal glide in a twin band in which, owing to the swing-over of the
lattice through an angle of about 60° to the direction of tension, the
basal plane has taken up a position highly favourable to further
extension (see Fig. 73, a and b).


