Figure 5 R = 0,5°C/s Tq = 1200°C (d₁₂₀₀ = 300 μ m) Former δ -dendrites (D). White interdendritic areas (ID). (Most of the δ transformed to γ by the peritectic reaction and transformation.)

 \times 25 400 μ m

Figure 6

 $\begin{array}{lll} R & = 2,0^{\circ}C/s \\ Tq & = 1325^{\circ}C \\ 13 \mbox{ vol-}\% \mbox{ dendritic ferrite.} \\ Figures 6-9: \mbox{ Note that the residual ferrite only} \\ appears in the former <math display="inline">\delta\mbox{-dendrites.} \end{array}$

 \times 150 100 μ m

Figure 7								
$R = 0,5^{\circ}C/s$								
Tq = 1325°C								
19 vol-% dendri-								
tic ferrite (δ).								

Figure 8 $R = 0.5^{\circ}C/s$ $Tq = 1200^{\circ}C$ 9 vol-% dendritic ferrite (δ).

× 150

100 µm

 \times 150 100 μ m

Figure 9

 $\begin{array}{ll} R &= 0,1^\circ C/s \\ Tq &= 1325^\circ C \\ 20 \text{ vol-}\% \text{ dendritic ferrite.} \end{array}$

STEEL 403. 0,02 % C 19 % Cr 10 % Ni STAINLESS STEEL

Designations

SIS	AISI	Werkstoff Nr
(2352)	304L	1.4316

Composition (wt-%)

С	Si	Mn	Р	S	Cr	Ni	Мо	Cu	Co	Altot	N
0,019	0,31	0,94	0,009	0,010	19,5	10,2	0,11	0,03	0,05	0,002	0,044

 $\frac{Cr_{eq}}{Ni_{eq}} = 1,74$

	Average Cooling Rate,R, (°C/s)			
· · · · · · · · · · · · · · · · · · ·	2,0	0,5	0,1	
Liquidus temperature, ferritic primary phase, °C (1)	1447	1455	1453	
Temperature of austenite formation, $^{\circ}C$ (2)	1404	1415	1418	
Solidus temperature, °C (3)	1365	1390	1405	
Solidification range, °C	80	65	50	
Solidification time, s	90	220	610	
Fraction solidified as ferrite, %	91	92	98	

Precipitates

_

Element	Si	Mn	Cr	Ni
I P _D	1,6	1,5	1,1 1,2	1,5 0,7

Partly solidified

Figure 1

 $R = 0.5^{\circ}C/s$ $Tq = 1450^{\circ}C$ d = 65 μ m $\delta\text{-dendrites}$ and quenched liquid (L).

× 25

Completely solidified

Figure 2

 $R = 2,0^{\circ}C/s$ $Tq = 1340^{\circ}C$ = 130 μ m d Figures 2-4: Former δ -dendrites (D). White interdendritic areas (ID). (Most of the δ transformed to γ by the reaction and transformation.)

$$400 \ \mu m$$

Figure 3

 $R = 0.5^{\circ}C/s$ $Tq = 1340^{\circ}C$ d = 160 μ m

> \times 25 400 µm

Figure 4

 $R = 0,1^{\circ}C/s$ $Tq = 1340^{\circ}C$ = 500 μ m d

 $\begin{array}{l} R &= 0,5^\circ C/s \\ Tq &= 1200^\circ C \\ (d_{1200} = 170 \ \mu m) \\ Former \ \delta \ dendrites \ (D). \end{array}$ White interdendritic areas (ID). (Most of the δ transformed to γ by the peritectic reaction and transformation.)

400 µm × 25

Figure 6

- $\begin{array}{rl} \mathsf{R} &= 2,0^\circ\mathsf{C/s} \\ \mathsf{Tq} &= 1340^\circ\mathsf{C} \end{array}$
- 11 vol-% dendritic ferrite.

Figures 6-9: Note that the residual ferrite only appears in the former δ -dendrites (D).

 $100 \,\mu m$ × 150

Figure 7	Figure 8
$R = 0.5^{\circ}C/s$	$R = 0.5^{\circ}C/s$
Tq = 1340°C	$Tq = 1200^{\circ}C$
13 vol-% dendritic	5,8 vol-% dendritic ferrite.
(D) ferrite (δ).	

100 µm × 150

Figure 9 $\begin{array}{rl} \mathsf{R} &= 0,1^\circ\mathsf{C/s} \\ \mathsf{Tq} &= 1340^\circ\mathsf{C} \end{array}$ 9 vol-% dendritic ferrite.

100 µm × 150

STEEL 404. 0,04 % C 18 % Cr 9 % Ni STAINLESS STEEL

Designations

SIS	AISI	Werkstoff Nr									
2333	304	1.4301									

Composition (wt-%)

с	Si	Mn	Р	S	Cr	Ni	Мо	Cu	Co	Al _{tot}	N
0,036	0,44	1,25	0,025	0,010	18,4	9,1	0,38	0,20	0,25	0,002	0,081

 $\frac{Cr_{eq}}{Ni_{eq}} = 1,68$

Thermal Analysis

	Average Cooling Rate,R, (°C/s)				
	2,0	0,5	0,1		
Liquidus temperature, ferritic primary phase, °C (1)	1452	1451	1452		
Temperature of austenite formation, °C (2)	1423	1409	1424		
Solidus temperature, °C (3)	1365	1385	1405		
Solidification range, °C	90	65	50		
Solidification time, s	100	250	720		
Fraction solidified as ferrite, %	84	82	86		

Precipitates

_

Element	Mn	Cr	Ni	
I	1,2	1,1	1,3	R = 0,5 °C/s
Pn		1,2	0,7	Tq = 1340 °C

Partly solidified

Figure 1 R = 0,5°C/s Tq = 1447°C d = 40 μ m δ -dendrites and quenched liquid (L).

 $400 \,\mu\text{m}$ \times 25

Completely solidified

Figure 2 R = 2,0°C/s Tq = 1340°C d = 125 μ m Figures 2-4: Former δ -dendrites (D). White interdendritic areas (ID). (Most of the δ transformed to γ by the peritectic reaction and transformation.)

 $400 \,\mu\text{m}$ imes 25

 $\begin{array}{l} \mbox{Figure 3} \\ \mbox{R} &= 0.5^{\circ}\mbox{C/s} \\ \mbox{Tq} &= 1340^{\circ}\mbox{C} \\ \mbox{d} &= 190\ \mu\mbox{m} \end{array}$

400 μ m \times 25

 $\begin{array}{l} \mbox{Figure 4} \\ \mbox{R} &= 0,1^{\circ}\mbox{C/s} \\ \mbox{Tq} &= 1340^{\circ}\mbox{C} \\ \mbox{d} &= 340\ \mu\mbox{m} \end{array}$

400 μ m \times 25

Figure 5 $R = 0.5^{\circ}C/s$ $Tq = 1200^{\circ}C$ $(d_{1200} = 200 \mu m)$ Former δ -dendrites (D). White interdendritic areas (ID). (Most of the δ transformed to γ by the peritectic reaction and transformation.)

> \times 25 400 µm

Figure 6

 $R = 2,0^{\circ}C/s$ $Tq = 1340^{\circ}C$ 2,3 vol-% dendritic ferrite. Figures 6-9: Note that the residual ferrite only appears in the former δ -dendrites (D).

> × 150 $100 \,\mu m$

Figure 7 $R = 0.5^{\circ}C/s$ $Tq = 1340^{\circ}C$ 4,7 vol-% dendritic ferrite.

Figure 8

 $R = 0.5^{\circ}C/s$ $Tq = 1200^{\circ}C$ 2,0 vol-% dendritic ferrite.

> × 150 $100 \,\mu m$

Figure 9 $R = 0,1^{\circ}C/s$

 $Tq = 1340^{\circ}C$ 10 vol-% dendritic ferrite.

> \times 150 $100 \,\mu m$

STEEL 405. 0,07 % C 17 % Cr 10 % Ni Ti STAINLESS STEEL

Designations

SIS	AISI	Werkstoff Nr
2337	321	1.4541

Composition (wt-%)

С	Si	Mn	Р	S	Cr	Ni	Мо	Cu	Co	Ti	Al _{tot}	N
0,068	0,59	1,44	0,028	0,001	17,2	10,3	0,47	0,24	0,27	0,51	0,048	0,005

 $rac{\mathrm{Cr}_{\mathrm{eq}}}{\mathrm{Ni}_{\mathrm{eq}}} = 1,61$

Thermal Analysis

	Average Cooling Rate,R, (°C/s)			
	2,0	0,5	0,1	
Liquidus temperature, ferritic primary phase, °C (1)	1436	1440	1440	
Temperature of austenite formation, °C 🕧	1397	1406	1412	
Solidus temperature, °C (3)	1335	1370	1390	
Solidification range, °C	100	70	50	
Solidification time, s	105	235	680	
Fraction solidified as ferrite, %	82	82	82	

Precipitates

Ti(CN), (see figures 6-8).

-				
Element	Si	Mn	Cr	Ni
I P _D	1,6	1,6	1,1 1,2	1,5 0,7

Partly solidified

Figure 1

 $\begin{array}{l} R &= 0,5^{\circ}C/s \\ Tq &= 1430^{\circ}C \\ d &= 50 \ \mu m \\ \delta \text{-dendrites and quenched liquid (L).} \end{array}$

× 25 400 µm

Completely solidified

Figure 2 R = 2,0°C/s Tq = 1320°C d = 85 μ m Figures 2-4: Former δ -dendrites (D). White interdendritic areas (ID). (Most of the δ transformed to γ by the peritectic reaction and transformation.)

 \times 25 400 μ m

Fig	ure	3
R	=	0,5°C/s
Τq	=	1320°C

 $d = 110 \,\mu m$

× 25 400 µm

Figure 4

R	= 0,	1°C/s
Τq	= 13	320°C
d	= 20	$00 \mu m$

 \times 25 400 μ m

 $\begin{array}{ll} R &= 0,5^{\circ}C/s\\ Tq &= 1200^{\circ}C\\ (d_{1200} = 150\;\mu\text{m})\\ Former\;\delta\text{-dendrites}\;(D).\\ White interdendritic areas\;(ID).\\ (Most of the \delta transformed to \gamma by the peritectic reaction and transformation.) \end{array}$

 $400 \ \mu m \quad imes 25$

 $\begin{array}{l} \mbox{Figure 6} \\ \mbox{R} &= 0.5^\circ\mbox{C/s} \\ \mbox{Tq} &= 1380^\circ\mbox{C} \\ \mbox{Ti} (\mbox{C},\mbox{N}) \end{array}$

 $10 \,\mu \mathrm{m} \quad \times 1000$

Figure 7 R = $0,5^{\circ}C/s$ Tq = $1200^{\circ}C$ Coalesced eutectic Ti(C,N).

 $10 \,\mu \mathrm{m} \times 1000$

Figure 8 R = 0,1°C/s Tq = 1380°C Formation of eutectic Ti(C,N). $(L \rightarrow Ti(C,N) + \gamma)$

 $10 \,\mu\text{m}$ \times 1000

 $\begin{array}{ll} R &= 2,0^{\circ}C/s\\ Tq &= 1320^{\circ}C\\ 6 \text{ vol-}\% \text{ dendritic ferrite.}\\ Figures 9-12: \text{ Note that the residual ferrite only}\\ appears in the former <math display="inline">\delta\text{-dendrites (D)}. \end{array}$

Figure 10 R = $0.5^{\circ}C/s$ Tq = $1320^{\circ}C$ 8 vol-% dendritic ferrite.

× 150 100 µm

Figure 11

 $\begin{array}{ll} R &= 0.5^\circ C/s \\ Tq &= 1200^\circ C \\ 4.1 \ vol-\% \ dendritic \ ferrite \end{array}$

imes 150 $ext{ 100 } \mu \text{m}$

Figure 12 R = $0,1^{\circ}C/s$

Tq = 1320°C 4,8 vol-% dendritic ferrite

 \times 150 100 μ m

98 · Steel 406

STEEL 406. 0,05 % C 17 % Cr 12 % Ni 2,8 % Mo Nb **STAINLESS STEEL**

Designations	D	e	si	a	n	а	ti	o	n	s
--------------	---	---	----	---	---	---	----	---	---	---

SIS	AISI	Werkstoff Nr	
_	316 Cb	1.4583	

Composition (wt-%)

с	Si	Mn	Р	S	Cr	Ni	Мо	Cu	Co	Nb	Al _{tot}	N
0,052	0,44	1,71	0,013	0,007	17,2	12,6	2,80	0,03	0,03	0,54	0,004	0,010

<u>Cr_{eq}</u> = 1,58 Niea

Thermal Analysis

	Average Cooling Rate,R, (°C/s)			
	2,0	0,5	0,1	
Liquidus temperature, ferritic and austenitic primary phases, °C (1)	1420	1423	1424	
Temperature of maximum rate of formation of austenite, °C (2)	1410	1418	1417	
Temperature of carbide formation, $^{\circ}C$ (3)	1330-1275	1330-1290	1330 - 1305	
Solidus temperature, °C (4)	1275	1290	1305	
Solidification range, °C	145	130	120	
Solidification time, s	130	300	1240	
Fraction solidified as ferrite, %	<60	<45	<42	

Precipitates

1. Interdendritic ferrite, (see figures 4, 6-11). 2. Eutectic NbC, (see figures 6, 7, 9-11).

Element	Si	Mn	Cr	Ni	
I P _D Pup	1,7	1,5	1,1 1,3 1,1	1,4 0,6 0.8	R = 0,5 °C/s Tq = 1285 °C

Steel 406 • 99

Partly solidified

Figure 1a $\begin{aligned} R &= 0,5^{\circ}C/s \\ Tq &= 1423^{\circ}C \\ d &= 45 \ \mu m \\ \delta\text{-dendrites and} \\ quenched liquid (L). \end{aligned}$ Figure 1b R = 0,5°C/s Tq = 1415°C d = 45 μ m δ -dendrites, γ -dendrites and quenched liquid (L). Peritectic reaction (P).

× 25 400 µm

Completely solidified

Figure 2

 $\begin{array}{lll} R &= 2,0^{\circ}C/s\\ Tq &= 1270^{\circ}C\\ d &= 65\,\mu\text{m}\\ Figures \ 2-3: \ Former \ \delta\text{-dendrites}, \ \gamma\text{-dendrites},\\ dendritic \ and \ interdendritic \ ferrite, \ (compare \ fi-gures \ 8-9). \end{array}$

 \times 25 400 μ m

Figure 3

 $\begin{array}{ll} {\sf R} & = 0,5^{\circ}{\sf C}/{\sf s} \\ {\sf Tq} & = 1285^{\circ}{\sf C} \\ {\sf d} & = 80\,\mu{\sf m} \end{array}$

 \times 25 400 μ m

Figure 4

 $R = 0,1^{\circ}C/s$

 $Tq = 1300^{\circ}C$

 $d = 135 \,\mu m$

Former δ -dendrites, dendritic and interdendritic ferrite, (compare figure 11).

 $\begin{array}{ll} R &= 0,5^\circ C/s \\ Tq &= 1200^\circ C \\ (d_{1200} = 85 \mu m) \\ Former \ \delta \mbox{-dendrites}, \ \gamma \mbox{-dendrites}, \ dendritic \ and \\ interdendritic \ ferrite, \ (compare \ figure \ 10). \end{array}$

Figure 6 R = 0,5°C/s Tq = 1200°C Eutectic NbC and dendritic (D) ferrite (δ) .

 $25\,\mu\text{m}$ imes 600

Figure 7

 $25\,\mu\text{m}$ imes 600

 $R = 2,0^{\circ}C/s$ $Tq = 1270^{\circ}C$ 4,0 vol-% ferrite, dendritic (D\delta) and interdendritic (IDδ).

× 150

100 µm

Figure 9

 $R = 0.5^{\circ}C/s$ $Tq = 1285^{\circ}C$ 4,0 vol-% ferrite, dendritic (D\delta) and interdendritic (ID δ).

> × 150 $100 \,\mu m$

Figure 10

 $R = 0.5^{\circ}C/s$ $Tq = 1200^{\circ}C$ 2,9 vol-% ferrite, dendritic (D δ) and interdendritic (ID δ).

> × 150 $100 \,\mu m$

Figure 11

 $R = 0,1^{\circ}C/s$

 $Tq = 1300^{\circ}C$ 3,9 vol-% ferrite, dendritic (D δ) and interdendritic (IDδ).

> 100 µm imes 150

102 · Steel 407

STEEL 407. 0,02 % C 17 % Cr 13 % Ni 2,5 % Mo **STAINLESS STEEL**

Designations

SIS	AISI	Werkstoff Nr
2353	316 L	1.4435

Composition (wt-%)

С	Si	Mn	Р	S	Cr	Ni	Мо	Cu	Co	Altot	N
0,023	0,53	1,58	0,020	0,006	17,2	13,5	2,63	0,19	0,07	0,004	0,031

 $\frac{Cr_{eq}}{1,43}$ Ni_{eq}

f_S 0,0 0,2 **Thermal Analysis** Т 1 . (°C) 1400 1350

	Average Cooling Rate,R, (°C/s)			
	2,0	0,5	0,1	
Liquidus temperature, ferritic and austenitic primary phases, °C (1)	1423	1427	1428	
Temperature of maximum rate of formation of austenite, $^{\circ}C$ (2)	1418	1421	1425	
Solidus temperature, °C (3)	1345	1375	1380	
Solidification range, °C	80	50	45	
Solidification time, s	100	210	660	
Fraction solidified as ferrite, %	<46	<50	<34	

Precipitates

Interdendritic ferrite, (see figures, 5, 8-12).

Element	Mn	Cr	Ni	Мо	
1	1,5	1,2	1,2	2,2	R = 0,5 °C/s Tq = 1320 °C
PID		1,2	0,8		

Steel 407 • 103

Partly solidified

Figure 1

 $\begin{array}{ll} R &= 0.5^\circ C/s \\ Tq &= 1427^\circ C \\ d &= 55 \ \mu \,m \\ \delta \text{- and } \gamma \text{- dendrites, growing simultaneously and} \\ \textbf{quenched liquid (L).} \end{array}$

× 25 400 µm

Completely solidified

Figure 2

 $R = 2,0^{\circ}C/s$

 $Tq = 1320^{\circ}C$

 $d = 40 \,\mu m$

Former δ -dendrites, γ -dendrites, dendritic and interdendritic ferrite, (compare figure 9).

 \times 25 400 μ m

Figure 3

 $R = 0.5^{\circ}C/s$

 $Tq = 1320^{\circ}C$

 $d = 90 \,\mu m$

Figures 3–4: Former δ -dendrites, γ -dendrites and interdendritic ferrite, (compare figures 10 and 12).

 \times 25 400 μ m

Figure 4 R = 0,1°C/s Tq = 1320°C d = 100 μ m

104 · Steel 407

Figure 5

 $\begin{array}{ll} R &= 0,5^{\circ}C/s \\ Tq &= 1200^{\circ}C \\ (d_{1200} = 100 \ \mu\text{m}) \\ Former \delta \text{-dendrites}, \gamma \text{-dendrites and interdendritic ferrite, (compare figure 11).} \end{array}$

 $400 \,\mu\text{m}$ imes 25

Figure 6

 $\begin{array}{ll} R & = 0,5^{\circ}C/s \\ Tq & = 1427^{\circ}C \\ \delta\text{-dendrites and quenched liquid (L), (compare figure 1).} \end{array}$

 $100 \,\mu\text{m}$ imes 150

Figure 7

 $\begin{array}{ll} R & = 0.5^\circ C/s \\ Tq & = 1415^\circ C \\ \gamma \mbox{ growing into both } \delta\mbox{-dendrites and liquid.} \end{array}$

 $100 \,\mu\text{m}$ \times 150

Figure 8 $R = 0.5^{\circ}C/s$ $Tq = 1320^{\circ}C$ Austenite precipitated in interdendritic ferrite during quenching. Dark structure in figure 10.

 $R=2,0^{\circ}C/s$ Tq $=1320^{\circ}C$ 5,5 vol-% ferrite, dendritic (D δ) and interdendritic (ID δ).

× 150 100 µm

Figure 10 R = $0.5^{\circ}C/s$ Tq = $1320^{\circ}C$ 5.6 vol-% ferrite, mainly interdendritic (ID δ).

 \times 150 100 μ m

Figure 11

 \times 150 100 μ m

Figure 12 R = 0,1°C/s Tq = 1320°C 4,4 vol-% ferrite, mainly interdendritic (ID δ).

STEEL 408. 0,05 % C 18 % Cr 13 % Ni 2,5 % Mo STAINLESS STEEL

Designations

SIS	AISI	Werkstoff Nr
2343	316	1.4401

Composition (wt-%)

С	Si	Mn	Р	S	Cr	Ni	Мо	Cu	Co	Altot	N
0,048	0,63	1,65	0,018	0,007	17,7	13,4	2,68	0,15	0,07	0,004	0,045

 $\frac{Cr_{eq}}{Ni_{eq}} = 1,42$

	Average Cooling Rate,R, (°C/s)			
	2,0	0,5	0,1	
Liquidus temperature, ferritic and austenitic primary phases, °C (1)	1419	1423	1421	
Temperature of maximum rate of formation of austenite, °C (2)	1414	1422	1415	
Solidus temperature, °C	1330	1360	1370	
Solidification range, °C	85	60	50	
Solidification time, s	100	220	670	
Fraction solidified as ferrite, %	<36	<35	<34	

Precipitates

Interdendritic ferrite, (see figures, 5, 8-11).

5 5								
Element	Mn	Cr	Ni	Мо				
l P _{in}	1,6	1,2 1.2	1,2 0.7	2,1				

Steel 408 • 107

Partly solidified

Figure 1

 $\begin{array}{ll} R &= 0.5^\circ C/s \\ Tq &= 1423^\circ C \\ d &= 50 \ \mu m \\ \delta\text{- and } \gamma\text{- dendrites, growing simultaneously, and} \\ quenched liquid (L). \end{array}$

 \times 25 400 μ m

Completely solidified

Figure 2

 $\begin{array}{lll} R &= 2,0^{\circ}C/s\\ Tq &= 1305^{\circ}C\\ d &= 55\,\mu\text{m}\\ Former\,\delta\text{-dendrites},\,\gamma\text{-dendrites and interdendritic ferrite.}\\ \text{Some dendritic ferrite can also be seen, (compare figure 8).} \end{array}$

× 25 400 µm

Figure 3

 $R = 0.5^{\circ}C/s$

Tq = 1305°C

$$d = 85 \mu m$$

Former δ -dendrites, γ -dendrites and interdendritic ferrite, (compare figure 9).

 \times 25 400 μ m

Figure 4

 $\begin{array}{rl} \mathsf{R} &= 0,1^\circ\mathsf{C/s} \\ \mathsf{Tq} &= 1305^\circ\mathsf{C} \end{array}$

$$d = 140 \,\mu m$$

Former δ dendrites and γ dendrites. White interdendritic areas, (compare figure 11).

 \times 25 400 μ m

 $\begin{array}{ll} R & = 0.5^{\circ}C/s \\ Tq & = 1200^{\circ}C \\ (d_{1200} = 190 \ \mu\text{m}) \\ Former \delta \text{-dendrites}, \gamma \text{-dendrites and interdendritic ferrite, (compare figure 10).} \end{array}$

400 μ m imes 25

Figure 6

 $R = 0.5^{\circ}C/s$

 $Tq = 1420^{\circ}C$

Simultaneous growth of δ - and γ - dendrites. The transformation of δ into γ can also be seen, (peritectic reaction and transformation, compare figure 7).

L = quenched liquid.

 $200 \,\mu m \qquad \times 50$

Figure 7

 $\begin{array}{ll} R &= 0,5^{\circ}C/s \\ Tq &= 1420^{\circ}C \\ Transformation of \delta-dendrites. \\ Detail of figure 6. \end{array}$

 $100 \,\mu\text{m}$ imes 150

 $R=2,0^{\circ}C/s$ Tq $=1305^{\circ}C$ 4,0 vol-% ferrite, dendritic (D δ) and interdendritic (ID δ).

 \times 150 100 μ m

Figure 9 R = $0,5^{\circ}C/s$

 $Tq = 1305^{\circ}C$

5.0 vol-% ferrite, mainly interdendritic (ID δ). (Dark structure (A), austenite precipitated in ferrite during quenching.)

 \times 150 100 μ m

Figure 10

 $R = 0,5^{\circ}C/s$ $Tq = 1200^{\circ}C$ 0,1 vol-% ferrite, mainly interdendritic.

×

Figure 11

STEEL 409. 0,02 % C 17 % Cr 13 % Ni 2,5 % Mo 0,2 % N STAINLESS STEEL

Designations

SIS	AISI	Werkstoff Nr
2375	316 N	1.4429

Composition (wt-%)

С	Si	Mn	Р	S	Cr	Ni	Мо	Cu	Co	Al _{tot}	N
0,024	0,58	1,79	0,009	0,011	17,4	12,8	2,77	0,03	0,03	0,002	0,20

 $\frac{Cr_{eq}}{Ni_{eq}} = 1,32$

	Average Cooling Rate,R, (°C/s)			
	2,0	0,5	0,1	
Liquidus temperature, austenitic primary phase, °C (1)	1411	1421	1422	
Solidus temperature, °C (2)	1310	1350	1370	
Solidification range, °C	105	70	50	
Solidification time, s	85	245	640	

Precipitates

Interdendritic ferrite, (see figures 5, 8-11).

Microsegrega	ti	or	۱
--------------	----	----	---

Element	Mn	Cr	Ni	Мо				
1	1,6	1,2	1,1	2,1				

Partly solidified

Figure 1 R = $0,5^{\circ}C/s$ Tq = $1415^{\circ}C$ d = $40 \ \mu m$ γ -dendrites and quenched liquid (L).

 \times 25 400 μ m

Completely solidified

Figure 2 R = 2,0°C/s Tq = 1305°C d = 45 μ m Figures 2-4: γ -dendrites and interdendritic ferrite.

 \times 25 400 μ m

Figure 3

 $\begin{array}{rl} \mathsf{R} &= 0,5^\circ\mathsf{C/s} \\ \mathsf{Tq} &= 1305^\circ\mathsf{C} \\ \end{array}$

 $d = 70 \,\mu m$

imes 25 400 μ m

Figure 4

 $\begin{array}{rl} \mathsf{R} &= 0,1^\circ\mathsf{C/s} \\ \mathsf{Tg} &= 1305^\circ\mathsf{C} \end{array}$

 $d = 105 \,\mu m$

WILLIAM STRAT 到和原 anna a NIGX118

imes 25 400 μ m

Figure 5
$R = 0.5^{\circ}C/s$
$Tq = 1200^{\circ}C$
$(d_{1200} = 75 \ \mu m)$
γ -dendrites and interdendritic ferrite.

 $400 \,\mu\text{m}$ imes 25

Figure 6 R = $2,0^{\circ}$ C/s Tq = 1305° C 0,8 vol-% interdendritic ferrite.

100 μ m \times 150

Figure 7	Figure 8
$R = 0.5^{\circ}C/s$	$R = 0.5^{\circ}C/s$
Tq = 1305°C	Tq = 1200°C
0,8 vol-% inter-	0,1 vol-% inter-
dendritic ferrite.	dendritic ferrite.

100 μ m \times 150

Figure 9

 $R = 0,1^{\circ}C/s$ Tq = 1305°C 0,8 vol-% interdendritic ferrite.

 $100 \,\mu\text{m}$ $\times 150$

STEEL 410. 0,01 % C 25 % Cr 22 % Ni 2 % Mo STAINLESS STEEL

-			
	0000	tion	~
1125			
			•

SIS	AISI	Werkstoff Nr	
_	_	_	

Composition (wt-%)

с	Si	Mn	Р	S	Cr	Ni	Мо	Cu	Co	Ті	Al _{tot}	N
0,008	0,24	1,77	0,009	0,008	25,1	22,2	2,3	0,02	0,02	0,08	0,002	0,067

 $rac{\mathsf{Cr}_{\mathsf{eq}}}{\mathsf{Ni}_{\mathsf{eq}}} = 1,21$

Thermal Analysis

	Averag	Average Cooling Rate,R, (°C/s)				
	2,0	0,5	0,1			
Liquidus temperature, austenitic primary phase, °C (1)	1401	1402	1401			
Solidus temperature, °C (2)	1335	1345	1355			
Solidification range, °C	65	60	45			
Solidification time, s	95	225	700			

Precipitates

- 1. Interdendritic ferrite, (see figures 8-11).
- 2. Sigma-phase, (see figures 6 and 7).

Element	Mn	Cr	Ni	Мо
l P _{ID}	1,6	1,2 1,2	1,1 0,8	2,3

Partly solidified

Figure 1 R = 0,5°C/s Tq = 1398°C d = 60 μ m γ -dendrites and quenched liquid (L).

400 μ m \times 25

Completely solidified

Figure 2

 $\begin{array}{ll} R &= 2,0^{\circ}C/s\\ Tq &= 1310^{\circ}C\\ d &= 60\ \mu\text{m}\\ Figures\ 2-4:\ \gamma\text{-dendrites.}\\ \end{array}$ White interdendritic areas.

 $400 \ \mu m$ $\times 25$

Figure 3 R = $0,5^{\circ}C/s$ Tq = $1310^{\circ}C$ d = $80 \ \mu m$

 $400 \,\mu\text{m}$ $\times 25$

Figure 4 $R = 0,1^{\circ}C/s$ $Tq = 1310^{\circ}C$ $d = 160 \,\mu$ m

 $400 \,\mu\text{m}$ imes 25

 $\begin{array}{ll} R &= 0,5^{\circ}C/s\\ Tq &= 1200^{\circ}C\\ (d_{1200} = 110\;\mu\text{m})\\ \gamma\text{-dendrites}.\\ \end{array}$ White interdendritic areas.

imes 25 400 μ m

Figure 6 $R = 0,1^{\circ}C/s$ $Tq = 1310^{\circ}C$ Sigma-phase precipitated in ferrite, (dark structure in figures 9 and 11).

× 600 25 µm

Figure 7

$$R = 0,1^{\circ}C/s$$

 $Tq = 1310^{\circ}C$
Sigma-phase precipitated in ferrite
(Electron micrograph.)

 \times 3 000 5 μ m

Figure 8 $R = 2,0^{\circ}C/s$ $Tq = 1310^{\circ}C$ 1,0 vol-% interdendritic ferrite.

100 μ m \times 150

Figure 9

 $\begin{array}{ll} R &= 0,5^\circ C/s \\ Tq &= 1310^\circ C \\ 1,0 \ vol - \% \ interdendritic \ ferrite. \end{array}$

 $100 \,\mu\text{m}$ \times 150

Figure 10

 $\begin{array}{ll} R &= 0,5^\circ C/s \\ Tq &= 1200^\circ C \\ 0,7 \ \text{vol-}\% \ \text{interdendritic ferrite.} \end{array}$

 $100 \,\mu\text{m}$ \times 150

Figure 11 $R = 0,1^{\circ}C/s$ $Tq = 1310^{\circ}C$ 1,0 vol-% interdendritic ferrite.

100 µm × 150

STEEL 411. 0,07 % C 24 % Cr 20 % Ni HEAT RESISTANT STEEL

Designation	S	
SIS	AISI	Werkstoff Nr
2361	310 S	1.4842

Composition (wt-%)

С	Si	Mn	Р	S	Cr	Ni	Мо	Cu	Co	Ti	Altot	N
0,055	1,20	1,75	0,011	0,008	24,2	20,4	0,08	0,02	0,03	0,09	0,015	0,051

 $\frac{Cr_{eq}}{Ni_{eq}} = 1,15$

Thermal Analysis

	Averag	e Cooling Rate,	R, (°C/s)
	2,0	0,5	0,1
Liquidus temperature, austenitic primary phase, °C (1)	1399	1401	1399
Solidus temperature, °C (2)	1315	1330	1350
Solidification range, °C	80	70	50
Solidification time, s	105	230	750

Precipitates

Interdendritic ferrite, (see figures 6-8).

Element	Si	Mn	Cr	Ni		
I	2,4	1,9	1,2	1,2	R = 0,5 °C/s Tq = 1290 °C	

Partly solidified

Figure 1

R	= 0,5°C/s	
Τq	= 1395°C	
d	= 65 μm	
y-de	ndrites and quenched liquid	(L).

× 25 400 μm

Completely solidified

Figure 2

 $\begin{array}{l} {\sf R} &= 2,0^{\circ}{\sf C}/{\sf s} \\ {\sf Tq} &= 1290^{\circ}{\sf C} \\ {\sf d} &= 55\,\mu{\sf m} \end{array}$ Figures 2–4: γ -dendrites.

 $400 \ \mu m \qquad \times 25$

Figure 3

 $\begin{array}{ll} \mathsf{R} &= 0,5^\circ\mathsf{C/s} \\ \mathsf{Tq} &= 1290^\circ\mathsf{C} \end{array}$ d = 85 μ m

400 µm imes 25

Figure 4 $\begin{array}{rl} \mathsf{R} &= 0,1^\circ\mathsf{C/s} \\ \mathsf{Tq} &= 1290^\circ\mathsf{C} \end{array}$ $= 125 \,\mu m$

d

400 µm \times 25

 $\begin{array}{l} \mbox{Figure 8} \\ \mbox{R} &= 0,1^{\circ}\mbox{C/s} \\ \mbox{Tq} &= 1290^{\circ}\mbox{C} \end{array}$

 \times 150 100 μ m

STEEL 412. 0,1 % C 24 % Cr 20 % Ni HEAT RESISTANT STEEL

Designations

SIS	AISI	Werkstoff Nr
_	310	1.4845

Composition (wt-%)

С	Si	Mn	Р	S	Cr	Ni	Мо	Cu	Co	Ті	Al _{tot}	N
0,13	0,52	1,67	0,009	0,003	24,3	20,5	0,11	0,03	0,04	0,08	0,023	0,053

 $rac{\mathrm{Cr}_{\mathrm{eq}}}{\mathrm{Ni}_{\mathrm{eq}}} = 1,03$

Thermal Analysis

	Average Cooling Rate,R, (°C/s)				
	2,0	0,5	0,1		
Liquidus temperature, austenitic primary phase, °C (1)	1405	1407	1405		
Solidus temperature, °C (2)	1325	1335	1355		
Solidification range, °C	80	70	50		
Solidification time, s	95	230	690		

Precipitates

Interdendritic ferrite, (see figures 6-8).

Element	Si	Mn	Cr	Ni
1	2,5	1,9	1,2	1,2

Partly solidified

Figure 1

 $R = 0.5^{\circ}C/s$ $Tq = 1400^{\circ}C$ $d = 60 \ \mu m$ γ -dendrites and quenched liquid (L).

> × 25 400 µm

Completely solidified

Figu	ure 2
R	= 2,0°C/s
Τq	= 1300°C
d	$=$ 65 μ m
Figu	ares 2-4: γ -dendrites.

imes 25

Figure 3

R	= 0,5°C/s
Τq	= 1300°C
d	$= 90 \ \mu m$

× 25

 \times 25

Figure 4 = 0,1°C/s R $Tq = 1300^{\circ}C$ d = 125 μ m

 $\begin{array}{l} R &= 0.5^{\circ} C/s \\ Tq &= 1200^{\circ} C \\ (d_{1200} = 100 \ \mu m) \\ \gamma \text{-dendrites.} \end{array}$

 $400 \,\mu\text{m}$ $\times 25$

Figure 6

 $\begin{array}{ll} R &= 2,0^{\circ}C/s\\ Tq &= 1300^{\circ}C\\ 0,5 \mbox{ vol-}\% \mbox{ interdendritic ferrite.} \end{array}$

 $100 \,\mu\text{m}$ \times 150

Figure 7

 $100 \,\mu \mathrm{m}$ \times 150

Figure 8

 $\begin{array}{lll} R &= 0,1^\circ C/s \\ Tq &= 1300^\circ C \\ 0,5 \ \text{vol-}\% \ \text{interdendritic ferrite.} \end{array}$

 $100 \,\mu \text{m}$ $\times 150$

STEEL 413. 0,01 % C 19 % Cr 25 % Ni 4 % Mo 1,5 % Cu STAINLESS STEEL

Designations								
SIS	AISI	Werkstoff Nr						
_	-	1.4539						

Composition (wt-%)

с	Si	Mn	Р	S	Cr	Ni	Мо	Cu	Co	Ti	Ce	Altot	Ν
0,013	0,48	1,74	0,007	0,003	19,2	25,1	4,44	1,51	0,02	0,07	0,07	0,034	0,035

 $\frac{\mathrm{Cr}_{\mathrm{eq}}}{\mathrm{Ni}_{\mathrm{eq}}} = 0,94$

Thermal Analysis

	Average Cooling Rate,R, (°C/s)					
	2,0	0,5	0,1			
Liquidus temperature, austenitic primary phase, °C (1)	1389	1391	1391			
Solidus temperature, °C (2)	1305	1315	1345			
Solidification range, °C	85	75	45			
Solidification time, s	100	230	760			

Precipitates

_

	9.094					
Element	Si	Mn	Cr	Ni	Мо	
1	1.8	1.7	1,2	1,1	2.0	R = 0,5 °C/s Ta = 1280 °C

Partly solidified

Figure 1

 $R = 0,5^{\circ}C/s$ $Tq = 1385^{\circ}C$ $d = 70 \ \mu m$ γ -dendrites and quenched liquid (L).

400 μ m \times 25

Completely solidified

Figure 2

 $\begin{array}{ll} R &= 2,0^{\circ}C/s\\ Tq &= 1280^{\circ}C\\ d &= 55\ \mu\text{m}\\ Figures\ 2-4:\ \gamma\text{-dendrites.}\\ \end{array}$ White interdendritic areas.

400 μ m \times 25

Figure 3							
R	= 0	,5°C/s					
Τq	= 1	280°C					
d	= 8	$0\mu m$					

400 μ m \times 25

 $\begin{array}{l} \mbox{Figure 4} \\ \mbox{R} &= 0,1^{\circ}\mbox{C/s} \\ \mbox{Tq} &= 1280^{\circ}\mbox{C} \\ \mbox{d} &= 120 \ \mu\mbox{m} \end{array}$

400 μ m imes 25

 $\begin{array}{ll} R &= 0,5^{\circ}C/s\\ Tq &= 1200^{\circ}C\\ (d_{1200} = 90\;\mu\text{m})\\ \gamma\text{-dendrites.}\\ \end{array}$ White interdendritic areas.

 \times 25 400 μ m

STEEL 414. 0,4 % C 25 % Cr 20 % Ni HEAT RESISTANT STEEL

Designations

Composition (wt-%)

с	Si	Mn	Р	S	Cr	Ni	Мо	Cu	Co	ті	Al _{tot}	N
0,41	1,00	1,34	0,007	0,010	25,2	20,6	0,08	0,02	0,06	0,10	0,016	0,022
$\frac{Cr_{eq}}{Ni_{eq}} = 0$,89			4			0.6		0.0	0.00	10	
				T (°C)	0,0 0,	2 0,4	0,6		0,8	0,86	1,0	<u>dΤ</u> dτ
Thermal	Analysis			1/.00	1							(°C/s)
						T						+1,5
				1350-						0		+1,0
										∠		+0,5
				1300						×À		- • 0
				-		dΤ dτ				\mathcal{T}	N	-0,5
				1250-							\square	-1,0
			0.500/-	1200								-1,5
		H =	= 0,5°C/S	1200	0	100		20	00		300 τ	(s)

	Averag	Average Cooling Rate,R, (°C/s)					
	2,0	0,5	0,1				
Liquidus temperature, austenitic primary phase, °C (1)	1383	1385	1385				
Temperature of formation of eutectic, $^{\circ}C(2)$	1275-1260	1285-1275	1290-1280				
Solidus temperature, °C (3)	1260	1275	1280				
Solidification range, °C	125	110	105				
Solidification time, s	125	290	1140				

Precipitates

Interdendritic $M_{23}C_6$ – eutectic. The amount of carbide eutectic increased with increasing cooling rate, (see figures 6-12).

Microsegregation						
Eleme	ent Si	Mn	Cr	Ni		
I P _{ID}	2, Carbide	1 1,6 /γ	1,2 1,6	1,1	R = 0,5 °C/s Ta = 1230 °C	

Partly solidified

Figure 1

 $\begin{array}{l} \mathsf{R} &= 0,5^\circ\mathsf{C}/\mathsf{s} \\ \mathsf{Tq} &= 1375^\circ\mathsf{C} \\ \mathsf{d} &= 60\ \mu\mathsf{m} \\ \gamma\text{-dendrites and quenched liquid (L). } \end{array}$

imes 25 400 μ m

Completely solidified

Figure 2 R = $2,0^{\circ}C/s$ Tq = $1230^{\circ}C$ d = $50 \ \mu m$ Figures 2-4: γ -dendrites and interdendritic carbide eutectic, (compare figures 6-10, 12).

× 25 400 µm

× 25

400 µm

Figure 4						
R	=	0,1°C/s				
Τq	=	1230°C				
d	=	$105 \mu m$				

Figure 3

Figure 5

 $\begin{array}{lll} R & = 0,5^{\circ}C/s \\ Tq & = 1100^{\circ}C \\ (d_{1100} = 90 \ \mu m) \\ \gamma \text{-dendrites and interdendritic carbide eutectic,} \\ (compare figure 11). \end{array}$

 $400 \,\mu\text{m}$ $\times 25$

Figure 6

 $25\,\mu\text{m}$ imes 600

Figure 7 R = 0,5°C/s Tq = 1230°C M₂₃C_{6- γ} eutectic (E) and residual melt (L).

 $25\,\mu\text{m}$ imes 600

Figure 8 R = 0,1°C/s Tq = 1230°C $M_{23}C_6-\gamma$ eutectic.