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Abstract

Cementite precipitation from austenite in steels can be suppressed by alloying with
silicon. There are, however, no validated thermodynamic data to enable phase equi-
libria to be estimated when silicon is present in cementite. The formation energies
of Fe3C, (Fe11Si4c

Fe)C4 and (Fe11Si8d
Fe)C4 have therefore been estimated using first-

principles calculations based on the total-energy all-electron full-potential linearized
augmented plane wave method within the generalized gradient approximation to
density functional theory. The ground state properties such as lattice constants and
bulk moduli have also been calculated. The calculations show that (Fe11Si4c

Fe)C4

and (Fe11Si8d
Fe)C4 have about 52.06 kJ mol−1 and 37.17 kJ mol−1 greater formation

energy, respectively, than Fe3C. The formation energy for hypothetical cementite
Si3C has also been calculated to be about 256 kJ mol−1. Silicon substitution sig-
nificantly reduces the magnetic moments at the Fe(4c) site for both (Fe11Si4c

Fe)C4

and (Fe11Si8d
Fe)C4, irrespective of the Si substitution sites. The calculated electronic

structures indicate that the magnetic moment reduction at the Fe(4c) site by the
Si substitution at 4c site is indirect through the neighboring carbon atom, whereas
at the 8d site it is direct.

1 Introduction

There is a particular combination of phases in steels which has led to dra-
matic developments in their application in a variety of technologically vital
contexts [1–13]. This combination is commonly designated carbide-free bainite
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and consists of a mixture of fine ferrite plates with a body-centred cubic (bcc)
crystal structure, embedded in a matrix of carbon-enriched austenite with a
face-centred cubic (fcc) structure. This latter phase is not usually stable at
ambient temperatures, but is made so by preventing cementite (Fe3C) precip-
itation using silicon as an alloying addition to the steel. The austenite is then
able to retain carbon in solid solution, enabling it to remain untransformed to
room temperature.

The specific role of silicon in suppressing cementite precipitation has been
known for a long time [14–28]. For cementite to precipitate at low tempera-
tures, it must inherit the silicon concentration of the parent phase; since the
solubility of silicon in cementite is negligibly small, the trapping of silicon is
thought to dramatically reduce the driving force for precipitation [29–32].

However, it has not been possible to theoretically justify the mechanism by
which the silicon acts, because thermodynamic data on silicon in cementite
cannot be measured due to its incredibly low solubility in the carbide. Val-
ues based on educated guesses are used in the limited calculations that exist
[31,32]. The purpose of the work presented here was specifically to derive
the relevant thermodynamic data using total energy calculations, in partic-
ular, by using the all-electron full-potential linearized augmented plane-wave
(FLAPW) method [33,34] implemented in the QMD-FLAPW package.

2 Previous Work

As seen in Fig. 1, the crystal structure of cementite is orthorhombic with space
group Pnma and its experimental lattice constants are known as a = 5.0896 Å,
b = 6.7443 Å and c = 4.5248 Å [35]. Cementite has four Fe atoms taking Fe(4c)
positions which are not equivalent to the Fe(8d) positions of the other eight
Fe atoms, and four C atoms located at C(4c) positions [35,36].

An ab initio study on pure cementite using the linear muffin-tin orbital (LMTO)
method has shown the magnetic moments in the ferromagnetic state to be
1.98µB, 1.74µB and −0.06µB for the Fe(4c), Fe(8d) and the carbon atoms,
respectively; the calculated cohesive energy per atom, Ecoh, was found to be
8.37 eV [37]. The calculated bulk modulus is found to be 235GPa and the
magnetic moment per formula unit to be 5.77µB using the FLAPW method
implemented in the WIEN2K package [38]. The transition from the metallic
ferromagnetic to paramagnetic state occurs at about 483K [39].

The substitution of Cr into cementite has previously been investigated; the
8d iron positions were found to be the favored sites for Cr, whose presence
enhances the atomic interactions in Fe3C leading to a considerable change in
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the local distribution of the electron density according to the self-consistent
full-potential LMTO (FP-LMTO) method [40].

3 Computational Model and Methods

The unit cell of cementite has an experimental volume of 155.32 Å3 [41] and
contains four formula units of Fe3C, where four Fe atoms take 4c positions
which are not equivalent to the 8d positions of the other eight Fe atoms [36],
and 4C atoms locate at 4c positions. The 4c positions for Fe are linear, while
the 8d positions are tri-planar.

The Si substituted Fe3C system is simulated by an orthorhombic unit cell with
the composition (Fe11Si)C4 corresponding to a silicon content of 4.07wt%.
This concentration is only a little higher than the 2wt% common in the
carbide-free bainitic steels [1–13]. It is also reasonable to assume that a Si
atom substitutes into an iron site, because the atomic radius of Si (1.18 Å) is
similar to that of Fe (1.24 Å), and much larger than that of C (0.71 Å) [42].
The location of the Si atom in the 4c or 8d site is identified using superscripts:
(Fe11Si4c

Fe)C4 and (Fe11Si8d

Fe)C4. The total energy calculations for the other po-
sitions of the same Wyckoff positions show essentially the same value within
numerical error.

The Kohn-Sham equation was solved self-consistently in terms of the total-
energy all-electron full-potential linearized augmented plane-wave (FLAPW)
method [33,34] by using the generalised gradient approximation (GGA) [43]
for the exchange-correlation potential. The integrations over the three dimen-
sional Brillouin zone (3D-BZ) were performed by the tetrahedron method [44]
over a 9 × 9 × 9 Monkhorst-Pack mesh [45] in the 3D-BZ which corresponds
to 125, 205 and 365 k-points inside the irreducible wedge of 3D-BZ for Fe3C,
(Fe11Si4c

Fe)C4 and (Fe11Si8d

Fe)C4, respectively. The degree of precision was ob-
tained by considering a plane-wave cutoff up to 21Ry, which corresponds to
about 1700 linearized augmented plane waves per each k-point and spin. The
wave functions, the charge densities, and the potential were expanded with
l ≤ 8 lattice harmonics inside each muffin-tin (MT) sphere with the radii
of 2.04 a.u., 2.04 a.u. and 1.30 a.u. for the Fe, Si and C atoms, respectively.
The density and potential in the interstitial region were depicted by using a
star-function cutoff at 340Ry. Core electrons were treated fully relativistically,
while valence states were calculated scalar relativistically, without consider-
ing spin-orbit coupling [46]. Fe-3p semicore states were treated by employing
the explicit orthogonalisation (XO) scheme for ensuring the orthogonality be-
tween the core and valence electrons [47]. Self-consistency was assumed when
the root-mean-square distances between the input and output total charges
and spin densities were less than 1.0 × 10−5 electrons/a.u.3
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The equilibrium lattice constants and the corresponding internal atomic po-
sitions were obtained by four steps. We start from the experimental lattice
constants and internal coordinates [35]. (1) We vary the unit cell volume (V)
followed by the 3rd order total energy fitting to find out the first step equilib-
rium volume V (1)

0 . (2) Then, we vary b/a with the fixed volume V (1)
0 to find out

the equilibrium b/a. (3) With the constraint obtained from the steps (1) and
(2), the equilibrium c/a value is obtained. (4) Based on the previously calcu-

lated equilibrium lattice variable set (V (1)
0 , b/a, c/a), we perform the volume

optimization with atomic position relaxations by the 3rd order total energy
fitting. This procedure greatly reduces optimization computational time, since
we do not perform on the full (V, b/a, c/a) total energy calculation matrix with
reasonable precision. The internal atomic positions are relaxed by using the
total energy and force minimization scheme using the Broyden method to find
the multidimensional zero [48]. We consider a relaxed structure, when the force
on each atom was smaller than 1mRy/a.u., and the position did not change
more than 3 × 10−3 a.u.

Fig. 2 and Fig. 3 show the calculated total energy versus unit cell volume with
the data fitted to the 3rd order polynomial, for both the nonmagnetic (NM)
and ferromagnetic (FM) states of cementite, (Fe11Si4c

Fe)C4 and (Fe11Si8d

Fe)C4.

4 Results and Discussion

Table 1 shows the results of lattice parameter optimization of Fe3C and calcu-
lated internal coordinates compared with experimental values. The calculated
unit cell volume of the FM Fe3C is about 2% smaller than the experimen-
tal data. Based on the temperature dependent experimental lattice constants
[41], the extrapolation to zero temperature gives a lattice volume of 154.4 Å3,
which is only about 1.4% larger than that calculated.

Tables 2, 3 and 4 contains the calculation results of equilibrium internal coor-
dinates of Fe3C, (Fe11Si4c

Fe)C4 and (Fe11Si8d

Fe)C4 with the distance of each atom
from one of 4c and 8d position. The calculated shortest interatomic distances
of Fe(8d), Fe(4c) and C(4c) from Fe(4c) are 2.495 Å, 2.695 Å and 2.015 Å in
Fe3C, respectively, which are changed to 2.466 Å, 2.669 Å and 2.061 Å, respec-
tively, in (Fe11Si4c

Fe)C4. In other words, the interatomic distances of Fe(8d)
and Fe(4c) measured from Si(4c) are contracted 1.2% and 1.0%, respectively,
while the distance from C(4c) is expanded 2.3%. The shortest interatomic
distances of Fe(8d), Fe(4c) and C(4c) measured from Fe(8d) are calculated
to be 2.452 Å, 2.495 Å, and 2.011 Å in Fe3C, respectively, which are changed
to 2.421 Å, 2.466 Å and 2.175 Å in (Fe11Si8d

Fe)C4. This feature means that the
interatomic distances from Fe(8d) to Fe(8d) and Fe(4c) are contracted 1.3%
and 1.2%, respectively, while the interatomic distance to C(4c) is expanded
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8.2%. These features reveal a general tendency that the substituted silicon
atom pulls the neighboring iron atoms, whereas it pushes out the neighboring
carbon atoms. In addition, the amounts of geometry distortions in (Fe11Si8d

Fe)C4

is significantly larger than those in (Fe11Si4c

Fe)C4 case.

Table 5 contains the energy minima of referenced elemental states and Table
6 gives the corresponding equilibrium lattice volumes, the formation energy
and calculated bulk moduli of Fe3C, (Fe11Si4c

Fe)C4 and (Fe11Si8d

Fe)C4 for the
NM and FM cases. Silicon substitution increases the NM cell volume but
has the opposite effect on the FM cementite. Substitution of Si in the 8d
positions leads to slightly bigger cell volumes than when iron is replaced in
the 4c positions on the FM cementite. The calculated bulk moduli of Fe3C are
319.70GPa and 226.84GPa for the NM and FM cases, respectively. The bulk
modulus of the FM case agrees reasonably with the previous first-principles
result of 235.13GPa of the FM Fe3C cementite by Faraoun et al. [38] The
small discrepancy is attributed to the different precision criteria they used.
The calculated bulk moduli of the NM cases are about 40% higher than those
of the FM cases for Fe3C, (Fe11Si4c

Fe)C4 and (Fe11Si8d

Fe)C4. The substitution
of Si into the Fe(4c) site and Fe(8d) sites reduces the bulk moduli about
4.4% and 3.2% in the NM cases, respectively. The corresponding reductions
in the FM cases are about 2.2% for the 4c substitution and 2.6% for the
the 8d substitution. These features indicate that the Si substitution at Fe(8d)
positions leads to a larger reduction in the bulk modulus than that at the
Fe(4c) positions.

The formation energies were calculated as the differences between the total
energy of each phase and the sum of the energies of the stable state of pure
elements forming this phase. The calculated total energies of the pure elements
are summarized in Table 5. The formation energy (∆U) of each system is
defined, with the integers l, m and n, at zero Kelvin, as follows:

∆U = E(FelSimCn) − lE(Fe) − mE(Si) − nE(C), (1)

where E(FelSimCn), E(Fe), E(Si) and E(C) are the total energies of FelSimCn,
FM bcc iron, diamond silicon and graphite carbon, respectively, at the cor-
responding equilibrium lattice constants. The bulk modulus of 3D symmetric
crystal structure such as bcc iron and diamond silicon are calculated using the
3rd order total energy polynomial depend on lattice volume. But graphite car-
bon is hexagonal and the elastic modulus in c-direction is significantly smaller
compared with the other axes. So the bulk modulus of hexagonal graphite
should be calculated using elastic constants [49]. The 25 distinct combinations
of the hexagonal lattice parameters a and c are used to determine the second
order two dimensional fitting polynomial for graphite internal energy. The elas-
tic constants (C11+C22), C33, C13 and bulk modulus of graphite carbon are
calculated to be 1248.3GPa, 40.9GPa, −5.7GPa and 37.69GPa, respectively.
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The formation energy of Fe3C is calculated to be about 21.5 kJmol−1 which
is only 3.2 kJmol−1 larger than the experimental value, 18.3 kJmol−1 [50].
The formation energies of (Fe11Si4c

Fe)C4 and (Fe11Si8d

Fe)C4 are calculated to be
138.11 kJmol−1 and 123.22 kJmol−1, respectively, which are 52.06 kJmol−1

and 37.17 kJmol−1 larger than the formation energy of four formula units
of Fe3C. It follows that 4.07wt% silicon dissolved in a mole of cementite at
zero Kelvin, requires 4.3 kJ for the 4c substitution and 3.1 kJ for the 8d sub-
stitution more energy than that required to form cementite using a mole of
iron. It clearly is more difficult to form (Fe11Si4c

Fe)C4 and (Fe11Si8d

Fe)C4 than a
mechanical mixture of Fe3C and Si.

Table 7 contains the calculated results of equilibrium lattice parameters and
internal coordinate of Si3C, which is composed of the silicon atoms by replacing
all the iron atoms in cementite. Compared to those values of Fe3C, the b-axis
of Si3C enlarges much, so the total volume becomes 208.29 Å3, which is 34.1%
larger volume than Fe3C. The calculated formation energy of the hypothetical
Si3C cementite are 256.4 kJmol−1 or 1025.63 kJ (unit cell mol)−1 for its NM
calculated equilibrium lattice constants using the same optimisation procedure
with Fe3C. The calculated excess energy of the Si3C over Fe3C very well agree
with 250 kJmol−1 usually assumed in thermodynamic calculations [32,31] and
260 kJmol−1 calculated using VASP [50] within 5 % error. These values are
one order larger than the formation energies of Fe3C and Fe11SiFeC4. When a
silicon atom replaces an Fe atom in the FM cementite, the required additional
formation energy is 37.17 kJmol−1 for the 8d sites or 52.06 kJmol−1 for the
4c sites. If we scale this excess energy in proportion to the corresponding site
occupation numbers of iron atoms substituted with silicon in the cementite
unit cell, we get 505.6 kJ (unit cell mol)−1, which is still about half the value
of the four formula unit of Si3C. It follows that a simple analysis in terms of
pairwise Si-Fe binding energies is likely to be a gross approximation of the
actual effect of silicon substitution.

Fig. 4 shows the dependency of formation energy at zero Kelvin with respect to
silicon concentration in cementite for the ferromagnetic cases. It is clear to see
that the formation energy behavior is nonlinear to the silicon concentrations
in cementite. This feature implies, in Fe3C cementite, that more substitutional
Si atoms require more formation energy in cementite.

Table 8 summarizes the calculated total magnetic moments, in units of µB, per
formula unit, which are 5.764µB, 4.907µB and 4.767µB for Fe3C, (Fe11Si4c

Fe)C4

and (Fe11Si8d

Fe)C4, respectively. For Fe3C, the calculated spin magnetic moment
inside the MT spheres of Fe(8d) and Fe(4c) sites are 2.059µB and 1.957µB,
respectively. On the other hand, the carbon atom spins are polarized negatively
to have the magnetic moment of −0.089µB and the interstitial regions have a
magnetic moment of −0.479µB.
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For the case of (Fe11Si4c

Fe)C4, the calculated spin magnetic moments of Fe(4c),
Fe(8d), C(4c), Si and interstitial region are 2.021µB, 1.793µB, −0.075µB,
−0.055µB and −0.426µB, respectively. For the case of (Fe11Si8d

Fe)C4, the cal-
culated spin magnetic moment of Fe(8d), Fe(4c), C(4c) and silicon atoms and
interstitial region are 1.881µB, 1.852µB, −0.077µB, −0.076µB and −1.037µB,
respectively. It is noticeable that the calculated magnetic moments of Fe(4c)
atoms are reduced significantly compared with those of Fe(8d) atoms in (Fe11Si8d

Fe)C4,
whereas the tendency of (Fe11Si8d

Fe)C4 case is opposite.

Fig. 5 presents the spin density contour plots in the plane normal to the b-
axis intersect the 4c positions, whereas Fig. 6 intersect the Fe(8d) positions.
The contours start from 1.0 × 10−3 electrons/a.u.3 and increase successively
by a factor of

√
2. The solid and broken lines represent the positively and

negatively polarized spins, respectively. The Si substitution on one Fe(4c) site
replaces the bonding between the Fe-d and the C-sp states by that of the
Si-sp and C-sp. It is noticeable that the spins of the Si-C bonding region
are polarized positively, while the Fe(8d) sites are not significantly affected.
In addition, the σ-like bonding between the Fe(4c)-d and the C(4c)-p shows
enhanced negative spin polarization, so the positively spin polarized region of
Fe(4c) site is reduced. This indirect effect of Si substitution is considered to
cause the large reduction of the magnetic moment of Fe(4c) in (Fe11Si4cFe)C4.

On the other hand, the effects on the magnetism of the Si substitution on the
Fe(8d) site seems rather direct. Fig. 7 presents the spin density contour plots
in the plane which contains Fe(4c), C(4c), and Fe(8d) sites simultaneously for
(a) Fe3C and (b) (Fe11Si8d

Fe)C4 by replacing one Fe(8d) atom by Si(8d), respec-
tively. The Si substitution on Fe(8d) site brings up the positive spin polariza-
tion on the C-Si bonding region as seen in the case of Fe11Si4cFeC4 in Fig. 5 and
Fig. 6. However, the spins of the π-like bonding between Si(8d)-p and Fe(4c)-d
are polarized negatively due to the Si substitution. It is considered that the
magnetic moment reduction on the Fe(4c) site by Si substitution on Fe(8d)
site is due to the direct effect of the π-like bonding between the Si(8d)-p and
the Fe(4c)-d states.

In Fig. 8, we present the calculated atom projected local density of states
(LDOS) for the (a) Fe(4c) and (b) Fe(8d) atoms. The solid lines, broken lines,
and dot-dashed lines represent the atoms belonging to Fe3C, (Fe11Si4cFe)C4,
and (Fe11Si4cFe)C4, respectively. The spin down DOS values are factored by −1,
and the Fermi levels (EF) are set to zero. We find that all the Fe bands are
broadened and split into sub-bands by the silicon substitution, due to local
symmetry breaking caused by the substitution. This feature is considered to
the reason for the general reduction of Fe magnetic moments by the silicon
substitutions. Compared to the band structure for Fe3C, the sub-band splitting
of Fe(4c) happens for all the silicon substitution cases. On the other hand, the
Fe(8d) spin-up band peak at −0.8 eV is shifted to −1.6 eV for the case of 8d
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substitution. These features agree well with the indirect effects of Fe(4c) sites
and the direct effects of Fe(8d) sites by the Fe-C-Fe bond distortions due to
silicon substitutions, as seen in Figs. 5, 6 and 7.

5 Conclusions

The electronic structures and magnetic properties of cementite Fe3C and its
corresponding silicon substituted forms (Fe11Si4c

Fe)C4, (Fe11Si8d

Fe)C4 and Si3C
have been investigated using first-principles calculations based on the FLAPW
method within the GGA. The bulk modulus of Fe3C is reduced a few percent
on substitution of Si. The calculated equilibrium volume of ferromagnetic Fe3C
at the ground state agrees well (within 1.4%) with the experimental data
extrapolated to zero Kelvin. The internal coordinate relaxations show that
the substituted Si atom pulls the neighboring Fe atoms, while it pushes the
neighboring carbon atoms.

The total energy calculations indicate that the Si substitution of an individual
silicon atom in cementite leads to about 52.06 kJmol−1 for the Si(4c) substitu-
tions or 37.17 kJmol−1 for the Si(8d) substitutions increment in the formation
energy. The corresponding excess energy when all the iron atoms are substi-
tuted to form Si3C is 78.3 kJ per one mole of silicon. A simple analysis in
terms of pairwise Si-Fe binding energies is likely to be a gross approximation
of the actual effect of silicon substitution.

It is found that on substitution of a silicon atom, the magnetic moment of the
Fe(4c) site is reduced more than that of the Fe(8d) site. The calculated spin
density contour plots and the Fe(4c) projected LDOS reveal that the magnetic
moment reduction at Fe(4c) site by the Si substitution at 4c site is indirect
bonding through the neighboring carbon atom, whereas at the 8d site it is
direct.
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Table 1. Calculated equilibrium lattice parameters (in units of Å), unit cell
volume (in units of Å3) and internal coordinates (in fractional units) of the
Fe3C cementite crystal structure. The experimental values of the cementite
crystal structure are included as reference.

Table 2. Calculated atomic positions (in fractional units) of Fe3C. d(4c) and
d(8d) are the calculated interatomic distances in units of Å measured from
one of Fe(4c) and Fe(8d), respectively.

Table 3. Calculated atomic positions (in fractional unit) of (Fe11Si4c

Fe)C4. d(Si)
is the interatomic distance in units of Å measured from the Si(4c) atom which
replaces Fe(4c).

Table 4. Calculated atomic positions (in fractional units) of (Fe11Si8d

Fe)C4. d(Si)
is the distance in units of Å measured from the Si(8d) which replaces Fe(8d).

Table 5. Calculated equilibrium unit cell volumes, total energies, and bulk
moduli of the reference materials of bcc Fe, graphite C and diamond Si. The
experimental bulk moduli of the pure elements as included for reference, V0

is the experimental volumes of the unit cells of the reference elements.

Table 6. Equilibrium unit cell volume, formation energy, and bulk moduli in
nonmagnetic(NM) and ferromagnetic(FM) cases, which are calculated using
the 3rd order polynomial fitting with V0 = 155.32 Å3, the experimental volume
of Fe3C. The bulk modulus of carbon is calculated using elastic constants
following the method which is used in Ref. [49]. The energy is stated in units
of kJmol−1 of each formula unit cells. Fe3C and Si3C have also the formation
energy which is multiplied by 4 in parentheses to compare with Fe11SiC4 cases.

Table 7. Calculated equilibrium lattice parameters in units of Å and internal
coordinate in fractional units of the hypothetical Si3C with the fully optimized
structure. The calculated value of the Fe3C cementite crystal structure as
included for reference.

Table 8. Calculated magnetic moments per formula unit of Fe3C, (Fe11Si4c
Fe)C4

and (Fe11Si8d
Fe)C4 and those of each atom (in units of µB) inside each muffin-tin

(MT) sphere and those of interstitial region.

Fig. 1. Crystal structure of cementite. The dark small spheres, the dark big
spheres, and the light big spheres represent C(4c), Fe(4c) and Fe(8d) atoms,
respectively.

Fig. 2. Total energy versus unit cell volume of Fe3C with the optimized value of
b/a and c/a. The crosses represent the nonmagnetic results, while the squares
represent the ferromagnetic ones with experimental internal coordinates [35].
The circles represent the ferromagnetic ones with optimized internal coor-
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dinates. The corresponding lines are 3rd order polynomial fits. The arrows
indicate the corresponding equilibrium lattice volumes.

Fig. 3. Total energy versus unit cell volume of (Fe11Si4c

Fe)C4 and (Fe11Si8d

Fe)C4

with the optimized value of b/a and c/a. The crosses represent the nonmag-
netic results, while the squares represent the ferromagnetic ones with exper-
imental internal coordinates [35]. The calculated energies of (Fe11Si4c

Fe)C4 is
hardly distinguishable from those of (Fe11Si8d

Fe)C4, so only (Fe11Si4c

Fe)C4 case is
plotted. The hollow circles and the solid circles represent the ferromagnetic
ones of (Fe11Si4c

Fe)C4 and (Fe11Si8d

Fe)C4, respectively, using optimized internal
coordinates. The corresponding lines are 3rd order polynomial fits. The arrows
indicate the corresponding equilibrium lattice volumes.

Fig. 4. Calculated formation energy of one mole of unit cell with respect to Si
concentration (in units of at%) in Fe3C cementite. The line is drawn to guide
for eyes.

Fig. 5. Spin density contour plots in the plane normal to the b-axis, cutting
the 4c plane of (a) Fe3C and (b) (Fe11Si4c

Fe)C4. The horizontal axis represents
[100] direction, while the vertical axis represents [001] one. Contours start
from 1.0 × 10−3 electrons/a.u.3 and increase successively by a factor of

√
2.

The solid and broken lines represent the positively and negatively polarized
spins, respectively.

Fig. 6. Spin density contour plots in the plane normal to the b-axis, cutting
the Fe(8d) positions of (a) Fe3C and (b) (Fe11Si4c

Fe)C4. The horizontal axis rep-
resents [100] direction, while the vertical axis represents [001)] one. Contours
start from 1.0×10−3 electrons/a.u.3 and increase successively by a factor of

√
2.

The solid and broken lines represent the positively and negatively polarized
spins, respectively.

Fig. 7. Spin density contour plots in the plane which contains Fe(4c), C(4c),
and Fe(8d) sites simultaneously for (a) Fe3C and (b) (Fe11Si8d

Fe)C4 by replacing
one Fe(8d) atom by Si(8d), respectively. The horizontal axis represents [100]
direction, while the vertical axis represents [085] one. Contour starts from
1.0 × 10−3 electrons/a.u.3 and increase successively by a factor of

√
2. The

solid and broken lines represent the positively and negatively polarized spins,
respectively.

Fig. 8. The calculated atom projected local density of states (LDOS) for the
(a) Fe(4c) and (b) Fe(8d) atoms. The solid lines, broken lines, and dot-dashed
lines represent the atoms belonging to Fe3C, (Fe11Si4cFe)C4, and (Fe11Si4cFe)C4,
respectively. The spin down DOS values are factored by −1, and the Fermi
levels (EF) are set to zero.
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Table 1

parameter calculation experiment [35]

a 5.1281 Å 5.0896 Å

b 6.6512 Å 6.7443 Å

c 4.4623 Å 4.5248 Å

volume 152.20 Å3 155.32 Å3

x1 0.1752 0.1816

x2 0.0358 0.0367

x3 0.1236 0.1230

y1 0.0662 0.0666

z1 0.1670 0.1626

z2 0.1602 0.1598

z3 0.0621 0.0560
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Table 2

type x y z d(4c) / Å d(8d) / Å

Fe(8d) 0.1752 0.0662 0.3330 2.625 0.000

Fe(8d) 0.1752 0.4338 0.3330 2.625 2.452

Fe(8d) −0.1752 −0.0662 −0.3330 2.495 3.594

Fe(8d) −0.1752 −0.4338 −0.3330 4.753 4.823

Fe(8d) 0.3248 −0.0662 −0.1670 2.581 2.526

Fe(8d) 0.3248 −0.4338 −0.1670 4.799 4.090

Fe(8d) −0.3248 0.0662 0.1670 2.662 2.677

Fe(8d) −0.3248 0.4338 0.1670 2.662 3.631

Fe(4c) −0.0358 0.2500 −0.1602 0.000 2.625

Fe(4c) −0.0358 −0.2500 0.1602 3.650 2.495

Fe(4c) 0.4642 −0.2500 0.3398 4.582 2.581

Fe(4c) −0.4642 0.2500 −0.3398 2.695 4.625

C(4c) 0.1236 −0.2500 −0.4379 3.589 4.053

C(4c) −0.1236 0.2500 0.4379 2.800 2.021

C(4c) 0.3764 0.2500 0.0621 2.015 2.011

C(4c) −0.3764 −0.2500 −0.0621 3.977 3.953
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Table 3

type x y z d(Si) / Å

Si(4c) 0.0301 0.2500 −0.1578 0.000

Fe(8d) 0.1780 0.0673 0.3382 2.644

Fe(8d) 0.1780 0.4327 0.3382 2.644

Fe(8d) −0.1726 −0.0644 −0.3298 2.466

Fe(8d) −0.1726 −0.4356 −0.3298 4.754

Fe(8d) 0.3201 −0.0646 −0.1638 2.575

Fe(8d) 0.3201 0.5646 −0.1638 2.575

Fe(8d) −0.3214 0.0667 0.1583 2.601

Fe(8d) −0.3214 0.4333 0.1583 2.601

Fe(4c) −0.0368 −0.2500 0.1624 3.647

Fe(4c) 0.4682 −0.2500 0.3424 4.607

Fe(4c) −0.4627 0.2500 −0.3442 2.669

C(4c) 0.1241 −0.2500 −0.4374 3.596

C(4c) −0.1326 0.2500 0.4290 2.757

C(4c) 0.3818 0.2500 0.0630 2.061

C(4c) −0.3799 −0.2500 −0.0665 3.968
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Table 4

type x y z d(Si) / Å

Si(8d) 0.1987 0.0627 0.3391 0.000

Fe(8d) 0.1725 0.4250 0.3314 2.421

Fe(8d) −0.1737 −0.0727 −0.3353 3.688

Fe(8d) −0.1811 −0.4391 −0.3320 4.904

Fe(8d) 0.3207 −0.0713 −0.1627 2.498

Fe(8d) 0.3262 −0.4375 −0.1628 4.076

Fe(8d) −0.3192 0.0738 0.1613 2.781

Fe(8d) −0.3233 0.4418 0.1630 3.772

Fe(4c) 0.0408 0.2432 −0.1683 2.696

Fe(4c) −0.0326 −0.2402 0.1684 2.466

Fe(4c) 0.4587 −0.2490 0.3443 2.473

Fe(4c) −0.4729 0.2429 −0.3549 4.799

C(4c) 0.1196 −0.2739 −0.4255 4.114

C(4c) −0.1414 0.2710 0.4484 2.287

C(4c) 0.3825 0.2758 0.0380 2.175

C(4c) −0.3771 −0.2512 −0.0540 4.032
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Table 5

Element Volume / Å3 V/V0 Energy / kJ mol−1 Bulk Modulus / GPa

calculated measured [51]

bcc Fe(FM) 11.3661 0.965 −3340575.0321 185.20 170

graphite C 8.8941 1.008 −99997.1282 37.69 33

diamond Si 20.4622 0.992 −761219.3261 88.52 100
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Table 6

Type Volume / Å3 V/V0 ∆U / kJ mol−1 Bulk modulus / GPa

Fe3C(NM) 143.27 0.922 73.9(295.63) 319.7

(Fe11Si4c
Fe)C4(NM) 144.65 0.931 316.22 305.79

(Fe11Si8d
Fe)C4(NM) 144.65 0.931 316.41 309.57

Fe3C(FM) 152.20 0.980 21.5(86.05) 226.84

(Fe11Si4c
Fe)C4(FM) 151.44 0.975 138.11 221.83

(Fe11Si8d
Fe)C4(FM) 151.97 0.978 123.22 221.00

Si3C(NM) 208.29 1.341 256.4(1025.63) 130.90
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Table 7

parameter Fe3C Si3C

a 5.1281 Å 5.2745 Å

b 6.6512 Å 8.1651 Å

c 4.4623 Å 4.8365 Å

volume 152.20 Å3 208.29 Å3

x1 0.1752 0.2514

x2 0.0358 0.0109

x3 0.1236 0.2454

y1 0.0662 0.0327

z1 0.1670 0.1896

z2 0.1602 0.2558

z3 0.0621 0.0588
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Table 8

region Fe3C Fe3C (LMTO)[37] (Fe11Si4c
Fe)C4 (Fe11Si8d

Fe)C4

formula unit 5.764 - 4.907 4.767

Fe(4c) 2.059 1.98 2.021 1.881

Fe(8d) 1.957 1.74 1.793 1.852

C(4c) −0.089 −0.06 −0.075 −0.077

Si(4c) - - −0.055 -

Si(8d) - - - −0.076

interstitial −0.120 - −0.107 −0.259
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Fig. 1.
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