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Abstract

A neural network was designed to model the elongation of neutron-irradiated steels. Predic-
tions were compared to experimental values and were in agreement. The model was extrapolated
to predict the elongation at high irradiation doses (200 dpa) and high temperatures (750◦C).
Because of the lack of experimental values at such doses and temperatures, predictions were
accompanied with very large modelling uncertainties.
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1 Reduced–Activation Steels

The formation of voids during irradiation with neutrons causes the swelling of metals. Irradiation
damage involves the creation of both interstitials and vacancies in equal concentrations, but the
former anneal out more rapidly than the latter. The resulting excess concentration of vacancies
is relieved by condensation into voids. Ferrite has a much higher resistance to void swelling than
austenite, although nickel base alloys rank alongside the ferritic steels [1]. Point defects introduced
by irradiation condense at neutral or biassed sinks. The latter are typically dislocations with large
Burgers vectors, attracting more interstitials than vacancies. It follows that a large density of
neutral sinks enhances the swelling resistance.

It is believed that in ferritic steels, irradiation induces the formation of two kinds of dislocations, one
of which is strongly biassed whereas the other is neutral. This provides sinks for both interstitials
and vacancies, resulting in a smaller excess of void–forming vacancies. It is for their swelling
resistance that ferritic steels have been considered for structural applications in the construction of
the first wall and blanket structures of fusion reactors. But the alloys must be such that radioactivity
decays rapidly once the steels are removed from nuclear exposure. These are the so–called reduced

activation alloys which have minimal concentrations of Mo, Ni, Nb, Cu and nitrogen, all of which
have long–lived radioactive isotopes [2, 3]. For example, molybdenum and niobium in steel can be
induced by neutron bombardment to transmute into radioactive species such that the decay time to
reach a safe level of radioactivity (25 micro Sieverts per hour) is of the order of 105 h. Some of these
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undesirable elements are key constituents of creep–resistant steels, but they can be eliminated by
using tungsten instead of molybdenum and by substituting vanadium and tantalum for niobium.

To summarise, ferritic steels are likely candidates in the design of fusion reactors and if implemented
will be exposed to 14 MeV neutrons and total irradiation doses of some ≈ 200 dpa [4]. A great deal
of research is underway to study the consequences of such an environment on the properties of the
steels, but because appropriate experimental facilities do not exist, much of the work is theoretical.
Back-propagation artificial neural networks were recently been used to model the yield strength
and the ductile-to-brittle transition temperature of irradiated steels [5, 6]. Here we extend the work
to estimating the elongation of irradiated steels.

2 Elongation of Irradiated Steels

Irradiated samples accumulate defects and transmutation products (primarily He) which by ob-
structing the motion of dislocations increase the yield strength and reduce elongation. The irradi-
ation dose and temperature directly influence the elongation, which usually decreases within the
first moments of the irradiation as the concentration of defects increases. Above a certain dose, the
defects reorganise in dislocations, loops and dislocation networks. A saturation in hardening and
reduction of the elongation appear during the transition from loop nucleation to loop growth; the
elongation then reaches a minimum and remains at this value or increases again, depending on the
irradiation conditions.

Tensile elongation is controlled by many factors, including details of the structure (atomic and mi-
crostructure, inclusions), plasticity (work–hardening coefficient as a function of strain, homogeneity
of deformation, strain rate, temperature) and size effects. It is not possible to calculate elongation
from first principles and yet such information is essential. An attempt is therefore made here to
develop an experience–based quantitative model using the neural network method. The database
needed to do this is discussed next.

3 Database

Elongation values from 408 irradiation experiments and 1155 tensile tests on unirradiated samples
were compiled into an extensive set including the classical candidate steels Eurofer’97, F82H and
steels such as 2.25Cr. Parameters most likely to influence the elongation were used as inputs: heat
treatment, chemical composition, helium concentration, radiation dose, irradiation and tensile–test
temperatures (Table 1). Elongation values for unirradiated steels were provided by the National
Institute of Materials Science (Japan) [7]. For unirradiated specimens, the irradiation dose and
helium concentration were set to zero and the irradiation temperature to 298 K.

Artificial parameters were used as additional inputs to help the model find complex relations be-
tween inputs and the output. This includes the Arrhenius expression exp( −Q

R T ) to capture thermal
activation effects in heat treatment,

√
dpa because it is related to the nucleation rate of helium

bubbles [8] and ln(time) since kinetic phenomena often vary logarithmically with time.
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Parameter Minimum Maximum Average Standard deviation

Tγ / K 1143 1323 1237 60
tγ / min 10 540 67 99
TT / K 898.15 1053 991 44
tT / min 30 660 125 130
C / wt% 0.064 0.34 0.130 0.043
Cr / wt% 0.0001 13.6 5.5 4.2
W / wt% 0 2.17 0.44 0.74
Mo / wt% 0 1.59 0.47 0.38
Ta / wt% 0 0.14 0.02 0.04
V / wt% 0 0.31 0.09 0.12
Si / wt% 0 0.86 0.27 0.19
Mn / wt% 0 2.09 0.53 0.21
N / wt% 0 0.17 0.013 0.016
Cu / wt% 0 0.25 0.051 0.05
Nb / wt% 0 0.075 0.006 0.017
Ni / wt% 0 2.3 0.18 0.42
P / wt% 0 0.03 0.011 0.007
Ti / wt% 0 0.052 0.002 0.005
Irradiation temperature / K 293 1146 366 156
Irradiation dose / dpa 0 72 3.2 9.4
Helium / appm 0 5000 61 388
Test temperature / K 109 973 587 212
Elongation / % 0.04 105 22 15

Table 1: Properties of database used to create the mathematical models. Tγ and tγ are the
austenitisation temperature and time respectively, and TT and tT the tempering temperature and
time respectively.

4 Model

It is not the intention here to describe the neural network method; details can be found in [9–12]
and the particular method used here has been widely applied in the discovery of phenomena in
steels [13–22]. However, a brief explanation of particular aspects is justified in order to set the
scene for later discussions.

A Bayesian environment allows the estimation of modelling uncertainties, i.e., to what extent can
the same data be represented by a variety of different mathematical formulations without unduly
compromising the fit in the region where experiments exist. The individual formulations may then
extrapolate differently, giving an indication both of the dangers of extrapolation and also identifying
domains where further experiments are needed.

The conventional error which all empirical regression methods consider is the noise, which represents
the effect of uncontrolled variables. This parameter is also estimated for each of our models [9–12].
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Overfitting is controlled partly by studying the generalisation of each model on unseen test–data,
and partly via the Bayesian framework [9–12]. Whereas the noise can decrease with increase
complexity (Fig 1a) the error in predicting the test data is expected to go through a minimum
when an optimum level of complexity is discovered which does not model noise, nor is it too simple
to capture real trends (Figure 1b).

Finally, we have also used an optimum committee of models in order to obtain the best ability
to extrapolate [9–12]. The resulting performance is illustrated in Fig. 2 where the uncertainties
represent ±1σ where σ is the combined effect of noise and modelling uncertainty. The correlation
is good but there are a number of outliers, i.e., points which are are many σ away from the line of
perfect fit, making them rather improbable.

(a) (b)

Figure 1: (a) Noise and the (b) error in predicting the test data, as a function of the complexity of
the model.

For every input, it was possible to calculate a significance, which is a measure of the ability of
an input to explain variations in the output, rather like a partial correlation coefficient. Figure 3
naturally shows that the temperature at which the tensile test is conducted is significant, but it is
noteworthy that chromium is highlighted and its influence is explored in detail later in the text.

5 Predictions

The ability of the network to model the elongation of irradiated steels was tested by making
predictions for three parameters which are believed to be vital: the test temperature, the irradiation
dose and the chromium concentration.
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Figure 2: The confidence with which the optimum committee of models estimates the known data.

Figure 3: Significance of individual inputs. Since the committee of models contains eighteen mem-
bers, there is a corresponding number of bars associated with each input.
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5.1 Test temperature

Chromium is of particular relevance because, for reasons which are not entirely clear, the extent
of embrittlement of ferritic steels due to irradiation seems to go through a minimum at about
9 wt% Cr in one of the candidate steels (Eurofer) for the future fusion power plant project [23].
One possibility is that at large chromium concentrations irradiation leads to the precipitation of
α–chromium but, as pointed out by Cottrell et al., the situation for concentrations less than 9 wt%
is not explained.

The elongation of three classical, creep–resistant chromium–containing alloys [24] with nominal
concentrations: 2.25 wt% Cr, 9 wt% Cr and 12 wt% Cr was calculated in the absence of irradiation.
Note that these are not reduced–activation steels but are nevertheless interesting to study because
they are well–established. Their compositions and heat treatments are listed in Table 2.

Table 2: Chemical compositions in wt%. The W, Ta, V, Nb and Ti concentrations are zero.

Alloy C Cr Mo Si Mn N Cu Ni P

2.25Cr 0.12 2.2 0.99 0.29 0.48 0.0095 0.07 0.05 0.015
9Cr 0.11 9.15 1.05 0.59 0.41 0.018 0.02 0.1 0.017
12Cr 0.12 12.38 0.09 0.48 0.71 0.0194 0.09 0.31 0.026

Alloy Tγ / K tγ / min TT / K tT / min

2.25Cr 1203 60 993.15 180
9Cr 1243 20 1013.15 90
12Cr 1243 30 1023.15 60

The calculated values and associated uncertainties are plotted alongside the measured values in
Figure 4a; the large increase in elongation at high temperatures is expected because the steels should
all soften in those circumstances. It is clear that the model has essentially captured the expected
behaviour for temperatures below 700 K but there are discrepancies for higher temperatures. It
is interesting however, that the elongation data themselves show that the 9Cr steel systematically
has the highest elongation. To check whether this is due to the chromium concentration or other
variables, the calculations were repeated by setting all the parameters other than Cr to be equal
to those of the 9Cr alloy – the results then show an insignificant difference between the 9 and 12Cr
steels, Figure 4b. It is evident that the difference between the 12Cr and 9Cr alloys in Figure 4a
cannot reasonably be attributed to their chromium concentrations alone.

The effect of irradiation at 20 and 100 dpa on the same alloys is illustrated in Fig. 5. Although there
is some deterioration in elongation at 20 dpa, that at 100 dpa seems to increase, although it could be
argued that the modelling uncertainties are too large to reach a confident conclusion. It speculated
that a large number of displacements per atom can cause the dissolution of precipitates introduced
during the tempering heat–treatments, which could in principle lead to a greater elongation.
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(a) (b)

Figure 4: Unirradiated steels: (a) Experimental and calculated values of elongation for steels whose
parameters are listed in Table 2. (b) As (a) but with the exception of Cr, all other input parameters
have been set equal to that of the 9Cr alloy.

(a) (b)

Figure 5: Input parameters as for Fig. 4 but with irradiation at (a) 20 dpa and (b) 100 dpa. Steels
were irradiated and tested at the same temperature.
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5.2 Irradiation Dose

The calculated elongations and associated uncertainties, as a function of the displacements per atom
(dpa), together with experimental data [25, 26] represented as points, are given in Figure 6a for
three different alloys labelled 2.25Cr, 9Cr-2WVTa and 12Cr-1MoVW. The chemical compositions
and heat treatments are given in Table 3.

Table 3: Chemical composition in wt%. The nitrogen concentration is zero.

Alloy C Cr W Mo Ta V Si Mn Cu Nb Ni

2.25Cr 0.11 2.36 0 0.01 0.005 0.25 0.17 0.4 0.02 0.005 0.01
9Cr–2WVTa 0.1 8.72 2.09 0 0.075 0.23 0.23 0.43 0 0 0
12Cr–1MoVW 0.2 11.71 0.54 1.02 0 0.31 0.13 0.49 0.05 0.015 2.27

Alloy P Ti Tγ / K tγ / min TT / K tT / min

2.25Cr 0.015 0.005 1323 60 973 60
9Cr–2WVTa 0.015 0 1323 60 1023.15 60
12Cr–1MoVW 0.011 0.003 1323 30 973 300

(a) (b)

Figure 6: Elongation calculations for (a) the alloys listed in Table 3. (b) Cr concentrations as for
(a) but all other parameters set to be those of the 9C–2WVTa alloy.

A minimum in the elongation is observed at 5–10 dpa for all the three alloys (only 2% at 10 dpa
for the 12 wt% Cr alloy), followed by a recovery as the dose increases. This low elongation has
previously been noted [26] and is attributed to the onset of channel deformation [27] in which dis-
locations sweep out defect–free channels so that subsequent deformation in these channels becomes
easier, leading to heterogeneous deformation. The minimum in total elongation is explained by
the growth of dislocation loops as the irradiation dose increases, making it more difficult to form
channels and hence rendering deformation more homogeneous.

Figure 6b shows the same calculations as Figure 6a, but with all the parameters set to be those of
the 9C–2WVTa alloy with the exception of the chromium concentration which is set to the values
stated in Table 3. These calculations were done to see whether the observed effects of chromium
are intrinsic to that element or whether other factors play a role. It is evident that the difference
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between the 12 and 9Cr steels vanishes and the calculation shows that the 2.25Cr alloy has a higher
elongation than the 9Cr and 12Cr. This is consistent with previous work on low-chromium alloys
(Klueh et al. [28]) where several chromium-tungsten steels with Cr concentrations of 2.25, 5, 9 and
12 wt% were tested. It was proved that the 2.25Cr-2WV alloy had the highest strength.

5.3 Chromium Concentration

As mentioned previously, the literature suggests that 7-9 wt%Cr alloys show a lesser tendency to
irradiation hardening and have a better resistance to radiation damage [5, 29]. However, in the
present work we do not find a clear optimum in chromium concentration with respect to ductility,
particularly when the calculations are done with all the other variables kept constant.

The variation in elongation (∆E = Eunirradiated − Eirradiated) of a 9Cr-2WVTa [25] alloy was mod-
elled at three different irradiation temperatures (293, 493 and 693 K). Figure 7 shows estimates for
the Cr–2WVTa system based around the Eurofer97 design, both for the unirradiated and irradi-
ated states. There is no evidence to suggest that there is an advantage in keeping the chromium
concentration in the range 7–9%.

One aspect worth pointing out is that some of the reported observations are based on differences

rather than absolute values. For example, ∆DBTT (the change in the ductile–brittle transition
temperature relative to the unirradiated state). This may be misleading because a brittle material
would be expected to have a smaller ∆DBTT even though an irradiated ductile material may have
a better toughness.

(a) (b)

Figure 7: Elongation calculations for 9Cr2WVTa (a) and Eurofer97 (b) at two irradiation doses, 0
and 10 dpa, as a function of the chromium concentration.

6 Extrapolation

The work done here was primarily designed to make estimates of temperatures and irradiation
doses where no experiments can be carried out for more than a decade whilst appropriate reactors
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(a) (b)

Figure 8: (a) Predicted % elongation for Eurofer’97. (b) Corresponding uncertainties.

(a) (b)

Figure 9: (a) Predicted % elongation for Eurofer’97. (b) Corresponding uncertainties.

are built, i.e. for high temperatures (900 K) and irradiation doses (200 dpa). The ability of the
network to extrapolate and to indicate uncertainties is therefore important.

Elongation was calculated between 300 and 1000 K and 0 and 200 dpa for two low–activation steels:
Eurofer’97 [30] and F82H [31]. The chemical compositions are given in Table 6; both steels had the
same heat treatment: 1 h at 1323 K and 1 h at 1023 K. Figures 8 and 9 show the results.

Table 4: Chemical composition in wt%. The Nb and Mo concentrations are zero.

Alloy C Cr W Ta V Si Mn N Cu Ni P Ti

Eurofer 0.12 8.99 1.1 0.14 0.19 0.07 0.44 0.017 0.022 0.007 0 0.009
F82H 0.093 7.65 1.98 0.038 0.18 0.09 0.49 0.002 0 0.05 0.001 0

The elongation reaches 140 and 120 % for Eurofer’97 and F82H at room temperature and 200 dpa.
It reaches 80 and 60 % in fusion conditions (900 K, 200 dpa) but the associated uncertainties are
large (Figs. 8, 9).
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7 Discussion and Conclusions

There have been previous attempts in the context of fusion materials, to model and extrapolate
irradiation behaviour using a neural network [5, 6]. There are two fundamental differences with
the work presented here. The previous effort did no include any heat treatment within the input
parameters and this is definitely known to be important in determining the physical properties of
creep–resistant steels.

Secondly, in order to avoid negative predictions, previous work emulated [32] in using a logarithmic
function of the output. Although theoretically justified for transformation kinetics [32], it has been
pointed out this procedure may when applied without justification lead to a biasing of the model
[33, 34]. The model was not trained on an output y directly but on Y :

Y = ln

(

−ln

(

y − ymin

ymax − ymin

))

(1)

where ymax and ymin are the maximum and minimum values in the database. This equation is
equivalent to

−exp(Y ) = ln

(

y − ymin

ymax − ymin

)

(2)

−exp(Y ) being strictly negative implies that
(

y−ymin

ymax−ymin

)

is smaller than 1 and y is thus bounded

by ymin and ymax. Training the model on a logarithmic values induces an upper and a lower limit for
the predicted values and hence biases the model. This is particularly the case when extrapolating
over long ranges.

The main suggestions to reduce modelling uncertainties and increase the reliability of the model in
areas far from the domain of available knowledge must come from a better understanding of hard-
ening mechanisms or the realisation of more irradiation experiments at high doses/temperatures.
Better irradiation experiment reports which include parameters often neglected (such as irradia-
tion time, flux, complete chemical composition, etc) could also contribute to refining predictions.
Finally, models should in normal circumstances be directly trained on the output itself rather than
a bounding function of the output.

One important conclusion from this work is that elongation per se is not necessarily optimised at
a concentration of 9 wt% of chromium; other factors intervene to give that impression.

This model is freely available online on the Materials Algorithms Project:
http://www.msm.cam.ac.uk/map/mapmain.html
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