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Abstract 
  

An expression for anisotropic interfacial energy of hexagonal close-packed metals has been 

formulated which is able to reproduce published data obtained using the modified 

embedded atom method, covering the variation in interface energy as a function of 

orientation for a number of metals. It turns out that the coefficients associated with the 

expression can be determined fully by measured or calculated interfacial energies of just 

three independent crystal planes. Three-dimensional phase-field model simulations using 

this representation of interfacial energy have been found to yield convincing crystal 

morphologies. The apparent rate of crystal growth as a function of orientation in the phase-

field simulation agrees with predictions made by surface energy theory. 
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1. Introduction 

  

Interfacial energy  (!) and its orientation dependence is in a phase-field model expressed 

via a gradient energy coefficient " [1-5], which scales with the square root of ! [6,7]. The 

calculation of the evolution of crystal morphology using phase fields requires a smooth 

analytical expression for " as a function of orientation, because a second order differential 

of " is required in the governing equation for the order parameter. There has been 

significant progress in the development of such expressions for cubic metals [1-5, 7]. Given 

a unit vector znynxnn zyx ˆˆˆˆ ##$  representing the normal to an interface in orthonormal 

coordinates, the earliest approach supporting two-dimensional phase-field calculations was 

based on % &' ()*"" "" kcos1#$  [1], where "  is the mean value of "; *" and k" are 

anisotropy parameters, and % &xy nnarctan$) . For computations in three-dimensions, it 

was suggested at first that % &' (4441 zyx nnn ###$ "*""  [4] but this has been modified into 

% & % &' (!###$ +)"+)""" ,,1 2211 KK  [5] after reviewing molecular dynamics simulations 

for dendrite growth which suggest that the addition of "2K2(), +) term gives a better 

representation of anisotropy, where % &zyx nnn 22arctan #$)  and % &xy nnarctan$+  

represent the orientation of the interface, "1 and "2 are coefficients reflecting the extents of 

anisotropy, K1(), +) and K2(), +) are cubic harmonics that are combinations of standard 

spherical harmonics with cubic symmetry. Recently, Qin and Bhadeshia suggested that the 

gradient energy coefficient can be expressed in the following format [7] 

% & % & % &2222222
3

222
2

222222
10ˆ xzzyyxzyxxzzyyx nnnnnnnnnnnnnnnn #######$ """""     (1) 
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where the associated coefficients can be determined by experimental measurement or 

numerical calculations such as those based on the embedded-atom method. This formula is 

proved to be able to describe published data obtained using the embedded atom method 

with good accuracy and to compute convincing crystal morphology. 

 

The hexagonal close-packed (hcp) metals constitute a large proportion of metallic 

materials. However, there is no corresponding expression for the gradient energy 

coefficient in the context anisotropy. The development of this is the aim of the present work 

so as to enable the evolution of crystal morphology to be estimated using the phase field 

method. 

 

2. Anisotropy of interfacial energy of hcp metals 

 

The hcp crystal is conventionally represented as in Fig. 1(a), with the [100]h and [010]h 

axes subtending an angle of 120,. The [001]h axis is perpendicular to both [100]h and 

[010]h. The ratio between vertical and horizontal cell-edges is denoted as c/a.  

 

For the convenience of a phase-field description, the miller indices of planes in the 

hexagonal lattice are converted into a cubic coordinate system. There are two simple ways 

of doing this, as illustrated in Fig. 1(a) and 1(b), respectively. The conversion illustrated in 

Fig. 1(a) is defined by 

   % & % &
--
-
-
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Fig. 1. Relation between hexagonal and cubic coordinates. (a). x-axis along the [100]h 

direction; (b) y-axis along the [010]h direction. (c) Relation between Miller indices, cubic 

and polar coordinates.  

 

where the subscripts c and h represent the cubic and hexagonal coordinate systems 

respectively. The conversion for the case illustrated in Fig. 1(b) is given by 

% & % &
--
-
-

.
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lkhlkh hc

/00
013/1
003/2

    (3) 

In cubic coordinates, as illustrated in Fig. 1(c), the normal to a plane with Miller indices 

(hkl)c plane is the direction [hkl]c. The interface normal znynxnn zyx ˆˆˆˆ ##$  can be 

represented in polar or spherical coordinates as follows: 
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The expression for the anisotropy of interfacial energy could contain a factor of 

42246 96 yxyxx nnnnn #3  in order to generate the required hexagonal geometry, and also a factor 

of m
zn  where m must be an even number to be consistent with the symmetry along the  

[001]h direction. The simplest resulting expression is therefore 

% & % &42246
210 96ˆ yxyxx

m
z nnnnnknkkn #3##$! .  

 

To validate the expression and determine the value of m, the proposed % &n̂!  was fitted to 

published interfacial energy data calculated using the modified embedded-atom method 

(MEAM) [8,9], which when compared with the original embedded atom method (EAM) 

[10,11], includes the directional bonding of the atoms in crystals [12-14]. The parameters in 

the interatomic potentials that are used in the MEAM computation of interface energy of 

hcp metals were developed by Baskes and Johnson [13]. Zhang et al. and Wang et al. 

reported the surface energies of 34 planes [8,9]. Some of the planes have two values 

available corresponding to two possible termination mechanisms in hcp lattices. The 

smaller of the two should be preferred in the determination of the crystal shape according to 

Wulff’s theorem [15]; therefore, only the smaller value was considered in the analysis 

presented here. 
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The data fitting was achieved using the least squares method, for which the objective 

function is defined as 

% & % &' (2ˆˆ4 3$
i

MEAM nn !!5        (5) 

where i equals the number of available MEAM data (34 in the current work), % &n̂!  is the 

proposed expression and % &nMEAM ˆ!  from MEAM data. The best values of k0, k1, and k2 are 

obtained when 5 achieves a minimum, i.e., at 0/ $66 jk5  with j=0, 1, and 2. The 

deviation between % &n̂!  and the % &nMEAM ˆ!  is represented by the average relative error 

(AvRE), defined as % & % & % &' (nnnAvRE MEAMMEAM ˆ/|ˆˆ| !!! 3$  where the bar means average, 

and the averaging procedure goes through all available orientations of the interface energy.  

 
 

Fig. 2. Comparison of the accuracy between numerical results from MEAM and values by 

% & % &42246
210 96ˆ yxyxx

m
z nnnnnknkkn #3##$!  as a function of the exponent m of zn .    
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The first step is to assess the value of m. For this purpose we tried m = 2, 4, 6, 8, and 10. 

The results are demonstrated in Fig. 2. It can be seen from Fig. 2 that m = 6 gives the best 

accuracy for majority of materials, although other values of m might provide less AvRE 

numbers for a few individual materials. It is therefore applied m=6 in following 

calculations and defines  

% & % &42246
2

6
10 96ˆ yxyxxz nnnnnknkkn #3##$!      (6) 

To compare the interface energies calculated using Eq. (6) with the MEAM data reported in 

reference [8], Eq. (3) was used to express the Miller indices in the cubic coordinates 

illustrated in Fig 1(b). The corresponding anisotropy coefficients and the average relative 

errors for 13 metals are listed in Table 1. Eq. (6) contains only three unknown coefficients, 

which means that they can in principle be determined using the interfacial energies from 

just three independent planes. To prove this, the coefficients were estimated using only the 

surface energies for (100)h, (110)h and (001)h; the results are  in Table 1 (column entitled 

AvRE3). It is evident that using information from just three planes to fix the coefficients in 

equation (6) gives a satisfactory description for all the planes of hcp metals. 

 

Table 1 Anisotropy coefficients k0, k1, k2 and AvRE determined by least squares fitting of 

MEAM data. The units for coefficients are in erg/cm2. AvRE3% is for the data plotted in 

Fig. 4. 

Metal 0k  
(erg/cm2) 

1k  
(erg/cm2) 

2k  
(erg/cm2) 

AvRE  
(%) 

AvRE3 
(%) 

Co 
Dy 
Er 

4849.39 
2780.3 
2777.18 

-2001.72 
-782.961 
-751.604 

-931.167 
-179.021 
-205.811 

5.57 
5.95 
5.25 

5.57 
5.20 
4.86 
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Gd 
Ho 
Mg 
Nd 
Pr 
Re 
Sc 
Tb 
Tl 
Zr 

1481.82 
2487.53 
1425.55 
2477.12 
1965.19 
4423.69 
1403.67 
1790.92 
1131.91 
2709.42 

-241.978 
-579.579 
-574.717 
-888.073 
-625.91 
-601.51 
-114.551 
-391.351 
-466.913 
-441.208 

-106.965 
-131.261 
-244.316 
-408.88 
-293.58 
-249.68 
-52.5072 
-161.747 
-213.432 
-144.752 

2.19 
4.84 
6.14 
4.58 
3.61 
1.90 
1.73 
3.01 
5.74 
2.49 

3.15 
4.59 
5.74 
4.79 
4.07 
3.21 
3.38 
3.54 
5.76 
3.42 

  

Wang et al. provided MEAM interfacial energy data for Be, Hf, Ru, Ti and Y [9]. Eq. (2) 

was applied to express the plane indices in cubic coordinates. The associated anisotropy 

coefficients and the average relative errors for those 5 metals are presented in table 2. The 

AvRE numbers calculated by Eq. (6) with coefficients determined by (100)h, (110)h and 

(001)h planes are listed in table 2 with column entitled AvRE3.  

 

 

Fig. 3. Comparison of interface energy calculated by Eq. (6) where anisotropy coefficients 

are determined by Eq. (6) using MEAM data. 
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Fig. 4. Comparison of interface energy calculated by Eq. (6) where anisotropy coefficients 

are determined interface energies at (100)h, (110)h and (001)h planes using MEAM data. 

 

The calculations for Be are not satisfactory. An examination of the original MEAM data [9] 

shows that the interface energy for (001)h plane is 1285.9 ergs/cm2 but  only 197.7 ergs/cm2  

in (110)h. The latter is less than 1/6 of the energy for the basal plane and is much less than 

the energies of semi-coherent interfaces [16]. The abnormal interfacial energy value for 

(110)h plane for Be leads to further discrepancies when the coefficients are determined 

using only the  (100)h, (110)h and (001)h. The AvRE values for Hf, Ti and Y are acceptable. 

Fig. 3 illustrates the comparison of all MEAM calculations with the Eq. (6) where the 

anisotropy coefficients k0, k1 and k2 are determined by the least squares method. Fig. 4 

shows the case where the anisotropy coefficients in the Eq. (6) were determined using 

information from just the (100)h, (110)h, and  (001)h planes. The comparison between the 

proposed expression of surface energy, Eq. (6), and the original MEAM data that were used 
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to determined the parameters of the expression for Co, Gd, Nd, Pr, Hf and Ti metals are 

demonstrated in Fig. 5, where the rainbow-coloured surface represents the numerical values 

by Eq. (6) and purple balls represent the MEAM data. The shadowed balls mean that they 

are inside the surface. A ball is inside, outside or embedded on the surface represents that 

the MEAM values are smaller, larger or about the same as the value by proposed 

expression. The closer a ball to the surface implies the better fitting. The rainbow colour of 

the surface represents the smooth changing of surface energy from its largest (represented 

by red colour) to its smallest (represented by blue colour).  

Co Gd  

Nd Pr  
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Hf Ti  
 
 

Fig. 5. Comparison of interface energy calculated by Eq. (6) with the original MEAM data 

for Co, Gd, Nd, Pr, Hf and Ti. The numerical values from Eq. (6) are represented by 

rainbow-coloured surface (colour changes from red to blue represents the surface energy 

goes from its largest value to the smallest). MEAM data are represented by purple balls. 

The shadow balls implies they are located inside the surface. The closer a ball to the surface 

implies the better fitting.  

 

Table 2 Anisotropy coefficients k0, k1, k2 and AvRE determined by least squares fitting of 

MEAM data. The units for coefficients are in erg/cm2. AvRE3% is for the data plotted in 

Fig. 4. 

Metal 0k  1k  2k  AvRE (%) AvRE3(%) 
Be 
Hf 
Ru 
Ti 
Y 

701.986 
1529.39 
1815.37 
1590.69 
723.886 

665.446 
353.494 
872.827 
261.408 
168.206 

-319.98 
-297.401 
-564.817 
-244.217 
-115.635 

24.24 
5.2865 
7.411 
4.414 
3.6478 

34.08 
8.988 
12.58 
7.149 
5.77 
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The basic difference between anisotropy coefficients listed in tables 1 and 2 is the sign of 

k1. In table 2, k1>0 reflects the fact that (001)h plane has the maximum surface energy, and 

vice versa for k1<0 in table 1. Fig. 6 shows the interfacial energies of Y and Tb from 

different perspectives.  

 

Fig. 6. Anisotropy of interfacial energy (red is the highest and blue the lowest energy). (a) 

and (b) Y; (c) and (d) Tb. 
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3. Gradient energy coefficients and phase-field model 

 

Cahn-Hoffman 7 vector theory is used to describe the interface anisotropy in a phase field 

model [17,18]. nx, ny and nz in Eq. (6) are replaced by 
x6
6

8
9

9
1 , 

y6
6

8
9

9
1  and 

z6
6

8
9

9
1 , 

respectively, where 9 is the phase-field order parameter which is introduced to represent 

the physical state of the material at any location.  9 = 0 and 9 =1 represent two bulk phases 

and 0<9<1 represents interface. For convenience the free energy density of the system is 

defined as [6,7] 

% & % & % &999
:

9"9 bgg #3#8$ 2222 1
4
1

2
1       (7) 

where : is a coefficient reflecting the kinetic barrier between two minima in the double-

well potential representation. % & % &' ( % & 101 ghghgb 999 #3$ , % & % &10156 23 #3$ 9999h , g0 

and g1 are free energy densities of bulk phases with 9=0 and 9=1, respectively. In all 

reported work on the simulation of cubic metals, the gradient energy coefficient " is 

represented as a polynomial expansion of nx, ny and nz. The present work suggests a 

different approach, as follows. 

  

In our previous work the relation between gradient energy coefficient % &n̂"  and interface 

energy % &n̂!  in direction n̂  was shown to satisfy [7] 

% & % &2ˆ
3

1.1ˆ nn "
;

! $      (8) 

where ; is the half-thickness of the interface. Representing % &n̂"  as 
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% & % &nn ˆˆ 0<"" $        (9) 

Eq. (9) is similar to an early suggestion for the gradient energy coefficient in two-

dimensional phase-field simulation of cubic metals [1]. On combining Eqs (6) and Eq. (8) 

and comparing with Eq. (9), it is seen that 

1.1/3 00 k;" $     (10) 

% & % &42246

0

26

0

1 961ˆ yxyxxz nnnnn
k
kn

k
kn #3##$<    (11) 

0"  does not have the meaning of average value of gradient energy coefficient. This is 

different from the original definition in other earlier work. The format of % &n̂<  is 

completely unfamiliar, but its computation does not appear to present particular difficulties. 

 

The governing equation for the evolution of phase-field order parameter takes the following 

format 

% & % &
% & % & % &

% & % & % &
% & =>

?
@
A

B
6
6

8
6
6

#
=
=
>

?

@
@
A

B

6
6

8
6
6

#
C
D
E

=
>

?
@
A

B
6
6

8
6
6

$
6
6

zyx

nn
z

nn
y

nn
x

M
t 9

<<9"
9
<<9"

9
<<9"9

9
ˆˆˆˆˆˆ 22

0
22

0
22

0  

% &' ( % &% & % & % &
F
G
H33333388# 10

2222
0 130211

2
1ˆ ggn 99999
:

9<"    (12) 

 

4. Numerical computation and discussion 

 

Based on the MEAM data for the interfacial energies of hcp metals presented in section 2, 

it is appropriate to categorize the hcp metal into two groups. The first group possesses the 

largest interface energy at (001)h plane and with k1>0. The second group has k1<0 and the 
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interface energy at (001)h plane is not the largest. It is known from experiments that the 

morphology of crystal in basal plane should be topological hexagon to reflect the nature of 

hcp lattice. It is also expected that the crystal will grow at the greatest rate along the 

direction with the largest interface energy so as to reduce the total surface energy for a 

given volume. For example, if  (001)h possesses the largest interface energy, the crystal 

should elongate along the [001]h direction and finally leave the smallest surface area 

parallel to (001)h. Wulff’s theorem can be used to predict the equilibrium crystal shape. For 

non-equilibrium crystal growth, although the shape is not necessarily consistent with 

equilibrium, it is feasible that the growth morphology is dominated by the equilibrium 

shape especially when the driving force for growth is not excessive.   

 

Fig. 7. Crystal morphology at 12000 time steps with anisotropy parameters k0 =1.8 J/m2, k1 

=0.6 J/m2 and k2 = - 0.1 J/m2
. The sections from left to right are along z = 94, 106, 152, 172 

and 178 grid position. The blue colour corresponds to 9=1, red colour 9=0 and rainbow 

0<9<1. 
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With this in mind, three types of phase-field simulations have been carried out. The first is 

with anisotropy coefficients chosen arbitrarily. The second and third cases utilise the 

anisotropy coefficients of Y and Tb respectively. The parameters are listed in table 3. 

 
Table 3 Anisotropy coefficients applied in phase-field computations of Figs. 7-9. 

    

 k0 (J/m2) k1 (J/m2) k2 (J/m2) 

Case 1 1.8 0.6 -0.1 

Case 2 0.723886 0. 168206 -0.115635 

Case 3 1.79092 -0.391351 -0.161747 

  

Other parameters in phase-field simulations are identical for all three cases with 

8
10 1068596.3 I$3 gg J/m3, 100$9M  and 3.14$;  nm [19, 20] in the simulations. : is 

determined by % &2
0

2 42.2/ ";: $  [6]. Eq. (12) is solved by a 6-neighbour implicit finite 

difference method on three-dimensional grids. The grid size is chosen as Jx=0.5; so that 

interface covers 4 elements [20, 22]. The initial condition is to put a spherical seed at the 

centre of the logistic frame with the phase-field order parameter configured to 

% &
% & % &
% &K

K
C

KK
D

E

JL$$

JMMJ
3#

$$

JM$$

xrfortr

xrxfor
r

tr

xrfortr

400,

4
1exp1

20,

10,

9

9

9

  (13) 

The system with case 1 parameters listed in table 3 is computed in 90I90I200 grids. The 

crystal shape at 12000 time steps is illustrated in Fig. 7, together with slices at z = 94, 106, 

152, 172 and 178. The colours from dark to light (blue to red) correspond to 9 from 1 to 0. 
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It is obvious that the crystal morphology of the basal plane is consistent with hexagonal 

symmetry.  

(a) (b)  

Fig. 8. Crystal shape at 20000 time steps with the anisotropy parameters k0 =0.723886 J/m2, 

k1 = 0. 168206 J/m2 and k2 = -0.115635 J/m2, where the green colour represents 9=0.5 

(growing crystal interface), red colour 9=0 (original matrix) and outside frame is for three 

dimension visualization effect. (a) View along [001]c. (b) Viewing along [100]c.   

 

Fig. 8 illustrates the crystal morphology at 20000 time steps using the anisotropic 

parameters of Y at 128I128I128 grids. The green colour represents 9=0.5 (growing crystal 

interface), red colour 9=0 (original matrix) and outside frame is for three dimension 

visualization effect.  Fig. 8(a) is viewed along [001]c towards the centre of the crystal and 

demonstrates the hexagonal symmetry. Fig. 8(b) is viewed from a position perpendicular to 

[001]c axis and with [001]c in vertical, which shows that the crystal grows faster along 

[001]c direction then other directions. When k1 >0 the crystal elongates along [001]c to 

minimise the surface area on (001)c. This agrees with the prediction described earlier.  
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Fig. 9 illustrates the crystal morphology at 17000 time steps for the same grid as Fig. 8 

using the parameters for Tb. The colours have the same meaning as that of in Fig. 8. The 

view along [001]c is again consistent with the hexagonal symmetry, and Fig. 9(b) shows 

that the crystal grows slowest along [001]c, which is along the vertical direction.  This is 

due to the fact of k1 < 0 which implies that the interface energy at (001)c plane is smaller. In 

this case the crystal grows faster normal to maximise the area of the low—energy plane 

(001)c. 

(a) (b)  

Fig. 9. Crystal shape at 17000 time steps with the anisotropy parameters k0 =1.79092 J/m2, 

k1 = -0.391351 J/m2 and k2 = -0.161747 J/m2
. The colours have the same meaning as that of 

in Fig. 8. (a) Viewing along [001]c. (b) Viewing along [100]c.  

 

5. Conclusions 
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(1) An expression for the anisotropic interface energy of hcp metals is suggested to be 

% & % &42246
210 96ˆ yxyxx

m
z nnnnnknkkn #3##$!  with m an even number, taken here to be 

6 in order to account for published data on the orientation dependence of interfacial 

energy in hexagonal close-packed metals. 

(2) The coefficients k0, k1 and k2 have been determined by comparison with published 

data calculated using the embedded-atom method. Our analysis reveals that since it 

is sufficient to consider just three interfaces to solved for the coefficients, future 

attempts at calculating interfacial energies need not explore a large set of interface 

orientations in order to define the anisotropy.  Indeed, it has been demonstrated that 

the published data can essentially be explained by deriving the coefficients from the 

data for just (100)h, (110)h and (001)h. 

(3) The gradient energy coefficient in phase-field model can be represented as 

% & % &nn ˆˆ 0<"" $ , where 1.1/3 00 k;" $  and 

% & % &42246

0

26

0

1 961ˆ yxyxxz nnnnn
k
kn

k
kn #3##$< .   

(4) Phase-field simulations demonstrate convincing hcp crystal morphologies, 

consistent with evolution towards an equilibrium shape calculated on the basis of 

interfacial energy minimisation. 
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