

Plastic Strain and Variant Selection during Diff usional Transformation in Steels

Dae Woo Kim, Dong-Woo Suh, C. Capdevila, H.K.D.H. Bhadeshia

Graduate Institute of Ferrous Technology Pohang University of Science and Technology

Reviews : Variant selection in displasive transformation

100-pole figure of martensite for the transformation of Cube oriented austenite grains.(b) is the experimental result and (c) shows favored variants of martensite and (d) show s all possible variants.*

- Shape deformation model (J.R. Pater et al., 1953) : Maximum work (Stress-Displacive shear)
- Active slip system model (J. Nutting et al, 1967) : Maximum resolved shear stress
- Bain strain model (Furubayashi et al., 1988) : Maximum work (Stress-Bain strain)

* Scripta Materialia 55 (2006) 779-781

Reviews : Variant selection in reconstructive transformation

(a) is ODF(Φ=45°) of ferrite obtained in hot rolled 0.12C-1.47Mn-0.05Nb steel.
(b) was calculated result from KS orientation relationship*

'Complicated metallurgical variables' (H. J. Bunge, 1983)

*Acta Metall. 24 (1976), 159

Research Aim

Experimental procedures

- EBSD : Scanning Electron Microscope
 - ZEISS SUPRATM (Step size : 0.2μ m)
- Software : OIM data collection, analysis 5.0

Results : Un-deformed sample

- $\alpha_1 \sim \alpha_7$: group 1 (precipitated at γ_1 / γ_2 grain boundary)

- $\alpha_8 \sim \alpha_{15}$: group 2 (precipitated at $\gamma_3/$ γ_4 grain boundary)

IQ map (a), Phase map (b) and Inverse pole figure (c) of scanned area

Results : Un-deformed sample

Grain	Deviation angle from KS relationship	
Group1	With respect to γ^1	With respect to γ^2
α1	1.73 °	17.3°
α^2	1.50°	18.3°
α3	4.3 7°	18.4°
α^4	2.05°	19.8°
α5	3.30°	18.1°
α6	2.13°	19.3°
α7	4.89°	19.8°
γ^1		41.7°
γ^2	41.7°	
Group2	With respect to γ^3	With respect to γ^4
Group2 α ⁸	With respect to γ^3 27.6°	With respect to γ ⁴ 7.9°
Group2 α ⁸ α ⁹	With respect to γ ³ 27.6° 2.02 °	With respect to γ ⁴ 7.9° 27.8°
Group2 α ⁸ α ⁹ α ¹⁰	With respect to γ ³ 27.6° 2.02° 28.2°	With respect to γ ⁴ 7.9° 27.8° 2.19°
Group2 α ⁸ α ⁹ α ¹⁰ α ¹¹	With respect to γ ³ 27.6° 2.02° 28.2° 28.3°	With respect to γ ⁴ 7.9° 27.8° 2.19° 2.87°
$\begin{array}{c} \textbf{Group2} \\ \alpha^8 \\ \alpha^9 \\ \alpha^{10} \\ \alpha^{11} \\ \alpha^{12} \end{array}$	With respect to γ ³ 27.6° 2.02° 28.2° 28.3° 28.1°	With respect to γ ⁴ 7.9° 27.8° 2.19° 2.87° 1.74°
$\begin{array}{c} \alpha^8 \\ \alpha^9 \\ \alpha^{10} \\ \alpha^{11} \\ \alpha^{12} \\ \alpha^{13} \end{array}$	With respect to γ ³ 27.6° 2.02° 28.2° 28.3° 28.1° 17.5°	With respect to γ ⁴ 7.9° 27.8° 2.19° 2.87° 1.74° 1.22°
$\begin{array}{c} \alpha^8 \\ \alpha^9 \\ \alpha^{10} \\ \alpha^{11} \\ \alpha^{12} \\ \alpha^{13} \\ \alpha^{14} \end{array}$	With respect to γ ³ 27.6° 2.02° 28.2° 28.3° 28.1° 17.5° 4.30°	With respect to γ ⁴ 7.9° 27.8° 2.19° 2.87° 1.74° 1.22° 25.3°
$\begin{array}{c} \alpha^8 \\ \alpha^9 \\ \alpha^{10} \\ \alpha^{11} \\ \alpha^{12} \\ \alpha^{13} \\ \alpha^{14} \\ \alpha^{15} \end{array}$	With respect to γ ³ 27.6° 2.02° 28.2° 28.3° 28.1° 17.5° 4.30° 13.4°	With respect to γ ⁴ 7.9° 27.8° 2.19° 2.87° 1.74° 1.22° 25.3° 6.24°
$\begin{array}{c} \alpha^8 \\ \alpha^9 \\ \alpha^{10} \\ \alpha^{11} \\ \alpha^{12} \\ \alpha^{13} \\ \alpha^{14} \\ \alpha^{15} \\ \gamma^3 \end{array}$	With respect to γ³ 27.6° 2.02° 28.2° 28.3° 28.1° 17.5° 4.30° 13.4° 38.0°	7.9° 27.8° 2.19° 2.87° 1.74° 1.22° 25.3° 6.24°

Results : *Deformed* sample

IQ image (a), Inverse pole figure(b) and Taylor factor map (c)

Results : *Deformed sample*

▲ (110)
 ● ▲ Austenite 1
 ● ▲ Austenite 2

(a) 110 and 111 pole figure of austenite 1 and 2(b) 110 pole figure of ferrite group(c) 111 pole figure of ferrite group

{111} of γ_1 // Grain boundary plane All ferrite has KS-type with γ_2

Discussion : Grain boundary plane orientation

Activation energy according to the tilt angle (Θ) for nucleation (*)

Low energy interface (facetted) // Matrix grain boundary

* Acta metal. 23:799, 1979

Discussion : *Dominant factor in strained sample*

Case I : 'Nucleation selection' dominant

$$\Delta G = -\frac{4\pi}{3}r^3(\Delta G_{\nu} + W) + 4\pi r^2\sigma_{\gamma\alpha}$$
$$\Delta G^* = \frac{\Gamma\sigma_{\gamma\alpha^3}}{(\Delta G_{\nu} + W)^2}$$

Benefit by Strain E $\uparrow \gg$ Loss of Interfacial E \uparrow \rightarrow Ferrite should have KS with γ_1 (Austenite free energy increase : $\gamma_1 > \gamma_2$)

Case II : 'Growth selection' dominant

Existence of very small ferrite which have KS-type with γ_1

→ All possible nuclei conditions in early stage of nucleation

At high energy boundaries and incoherent boundaries when

$$\frac{\Delta G_s^1 - \Delta G_s^2}{\overline{\Delta G_s}} \gg 0$$

Discussion : Growth selection

Discussion : Growth selection

- 'Double orientation relationship' irrespective of Taylor factor
- γ/γ boundary E \downarrow (Very stable)
- Boundary mobility \downarrow (Both semi-coherent boundaries)
- \rightarrow Invisible difference in growth rate between both sides

Summary

Thank you for your listening !

