

Fe and B Substituted Cr₂₃C₆ using First-principles Study

You Young Song, Seung-Woo Seo, In Gee Kim and H. K. D. H. Bhadeshia

Graduate Institute of Ferrous Technology, POSTECH, South Korea

Cr₂₃C₆ and its various solid solutions are vital phases in the most modern creep-resistant steels. Although there has been a great deal of work in understanding the significance of this carbide with respect to elevated temperature properties, the detailed thermodynamic properties deserve further attention. In particular, there is a long-term need to establish the atom-distribution, energetic and structural implications of different atoms in the basic Cr₂₃C₆ crystal structure, including solutes such as iron and boron. The standard thermodynamic assessments which are based on macroscopic measurements have not revealed such information. To work towards this goal, we use the all-electron full potential linearized augmented plane-wave method (FLAPW) within the generalized gradient approximation, a scheme more accurate than a variety of other density functional methods. The calculated ground state equilibrium lattice parameter is 10.57 Å for nonmagnetic Cr₂₃C₆ and 10.56 Å for ferromagnetic FeCr₂₂C₆ where the Fe atom prefers to substitute on the "4a" site. The formation enthalpy of Cr₂₃C₆ is calculated to be 1.82 kJ atom-mol⁻¹ higher than the lowest formation enthalpy of FeCr₂₂C₆. In future work we hope to introduce boron and nitrogen into the lattice given its known influence on the coarsening behavior of the carbide, and indeed to incorporate the energies thus calculated into phase diagram calculation methods such as CALPHAD.

Formation Enthalpy - Fe substituted M₂₃C₆

Fe prefers to substitute to Cr(4a) site of $M_{23}C_6$ Fe stabilizes $Cr_{23}C_6$ when substituted to Cr(4a) site

Formation Enthalpy - B substituted M₂₃C₆

B substitutes to C(24e) site of $M_{23}C_6$ B stabilizes $M_{23}C_6$ and increases the equilibrium volume

Calculated formation enthalpy of $M_{23}(C,B)_6$

	a / Á	B / Gpa	ΔH_{f} / kJ atom ⁻¹ mol ⁻¹	References
Cr ₂₃ C ₆	10.66		-10.98	* Yakel, 1987
	10.90	275	-8.18	Xie <i>et al</i> ., 2005
	10.56	294	-9.65	Henriksson <i>et al</i> ., 2008
	10.53	298	-8.75	Chao, 2008
FeCr ₂₂ C ₆	10.65			* Villars and Calvert, 1991
	10.90	278		Xie <i>et al</i> ., 2005
$Fe^{4a}Cr_{22}C_6$	10.55		-10.65	Henriksson <i>et al</i> ., 2008
Fe ₂₃ C ₆			11.98	* Guillermet and Grimvall, 1992
	10.63	276	4.39	Xie <i>et al.,</i> 2006
$Fe_{23}B_6$	10.62			Ohodnicki, 2008

Lattice parameter, bulk modulus and formation energy of $M_{23}(C,B)_6$ from literatures

First consistent calculations on $M_{23}(C,B)_6$ Calculated enthalpies will be implemented to database

CALPHAD XXXIX An International Conference on Phase Diagram Calculations and Computational Thermochemistry 2010 •