A First-principles Study on Fe Substituted Cr₂₃C₆

Y. Y. Song, I. G. Kim and H. K. D. H. Bhadeshia

Graduate Institute of Ferrous Technology Pohang University of Science and Technology

ABSTRACT

 $Cr_{23}C_6$ and its various solid solutions is a dominating phase in the creep-resistant steels. Although understanding its behavior with r espect to elevated temperature properties is important and a great deal of work has been done the thermodynamic properties of Cr_{23} C_6 and its solid solutions is not sufficiently studied. First-principl es calculation is done by the all-electron full potential linearized a ugmented plane-wave method (FLAPW) within the generalized g radient approximation. The calculated ground state equilibrium la ttice parameter is 10.57 Å and 10.56 Å for nonmagnetic $Cr_{23}C_6$ a nd ferromagnetic $FeCr_{22}C_6$ respectively, where Fe atom prefers to substitute the 4a site. The formation enthalpy of $Cr_{23}C_6$ is calculat ed to be 1.82 kJ atom-mol⁻¹ higher than the lowest formation ent halpy of $FeCr_{22}C_6$

Creep Resistant Steel

Anticipated efficiency improvements for changes in pow er plant operating conditions [Wachter and Ennis, 1995]

Typical creep curve at elevated temperature. [Callister, 2007; Dieter, 1998]

M₂₃C₆ in Power Plant Steels

[Bhadeshia, 2001]

[Robson and Bhadeshia, 1997]

- The volume fraction of $M_{23}C_6$ dominates and does not decrease after a long time.
- The size of $M_{23}C_6$ particles increase.
- \rightarrow M₂₃C₆ is the majority carbide in creep-resistant steels and coarsens in creep condition.

Fe and B in M₂₃C₆

Chemical composition of investigated steels (wt. %)

Calculation Parameters

- FLAPW method
- Generalized Gradient Approximation
- Calculated Systems

 $Cr_{23}C_6 Fe_{23}C_6$ Fe^{4a}Cr₂₂C₆ Fe^{8c}Cr₂₂C₆ Fe^{32f}Cr₂₂C₆ Fe^{48h}Cr₂₂C₆

- Calculated energies are at 0 K and zero pressure
- $\Delta H_{\rm f}$: Formation enthalpy per atom of ${\rm Cr}_{x}{\rm Fe}_{y}{\rm C}_{p}{\rm B}_{q}$
- *E*(X) : Calculated ground state energy of X
- N : Number of atoms, x+y+p+q

 $\Delta H_f(Cr_x Fe_y C_p B_q)$

$$= \{E(Cr_xFe_yC_pB_q) - xE(Cr) - yE(Fe) - pE(C) - qE(B)\} / N$$

E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, *Phys. Rev. B* 28, 864 (1981).
M. Weinert, E. Wimmer, and A. J. Freeman, *Phys. Rev. B* 26, 4571 (1982).
Perdew, J. P., Burke, K., Ernzerhof, M., *Phys. Rev. Let.* 77,3865 (1996).

S.-W. Seo, Y. Y. Song, R. Rahman, I. G. Kim, M. Weinert, and A. J. Freeman, J. Magnetics 14, 137 (2009).

Crystal Structure of Cr₂₃C₆

		Relaxed (Calculated) 10.57			Bowman, 1972 10.66		
	a (Å)						
		Х	У	Z	Х	у	Z
	Cr1(4a)	0	0	0	0	0	0
	Cr2(8c)	0.25	0.25	0.25	0.25	0.25	0.25
Fm3m	Cr3(32f)	0.381	0.381	0.381	0.385	0.385	0.385
	Cr4(48h)	0	0	0.34	0	0	0.35
	C(24e)	0.276	0.276	-0.276	0.275	0.275	-0.275

Volume versus Enthalpy

Fe Concentration versus Enthalpy

• Fe prefers to substitute Cr1(4a) site in $M_{23}C_6$

Calculated Formation Enthalpy

Calculated Volume of M₂₃C₆

CONCLUSION

- Fe substitution to $M_{23}C_6$
 - Prefers to substitute to Cr1(4a) site.
 - Stabilizes up to about 6 Fe atoms.
 - Decreases the unit cell volume of $M_{23}C_6$.
 - Nonmagnetic $Cr_{23}C_6$ becomes Ferromag netic $Fe_xCr_{23-x}C_6$
- Future Work

– Substitution of B in C site : $M_{23}(B,C)_6$