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Abstract

It is increasingly important in the context of high–manganese steels of the kind that lead to
twinning–induced plasticity to be able to estimate the temperature at which ε–martensite forms
when austenite is cooled. We find that the thermodynamic method used in similar calculations for
α′ martensite cannot in many cases be implemented because of apparently imprecise thermody-
namic data, a conclusion partly validated using limited first–principles calculations. Alternative,
empirical methods are also evaluated. The austenite grain size dependence of the martensite–start
temperature has also been rationalised in terms of existing theory for α′ martensite. Experiments
have also been conducted to show that the problem in dealing with the ε–martensite does not lie
in the precision with which the transformation can be measured using dilatometry.
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1 Introduction

The basis for the calculation of the martensite–start (MS) temperature was reviewed some time ago
by Kaufman and Cohen [1]; martensite is triggered when the free energy change for transformation

without a composition change (∆Gγα′

) reaches a critical value (∆Gγα′

MS
), the magnitude of which

is determined by stored energies and kinetic phenomena [2, 3]. Here γ refers to austenite and α′

to body–centred cubic or body–centred tetragonal martensite. The method has been applied with
some success to the γ → α′ transformation [4–12] and forms the basis of computer programs which
take as inputs the thermodynamic parameters of the parent and product phases and output the
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transformation–start temperature (for example, [13]). In this way, the incorporation of a previously
excluded element on the MS temperature simply requires an understanding of how this element
alters the thermodynamic stabilities of the phases involved.

Iron in which the atoms are arranged on a hexagonal lattice is designated ε. Although this is not
a common allotrope in alloyed iron at ambient pressure, it is gaining importance in low–carbon,
often low density, structural steels containing unconventionally large concentrations of manganese
[14–16]. It is also the basis of many iron–based shape memory alloys [17–19]. The ε therefore
features in reversible martensitic transformations and in steels where its transformation plasticity
is exploited. It is important therefore, in the process of alloy design and optimisation, to be able
to calculate its martensite–start temperature, at least as a function of the chemical composition.

The last attempt at dealing with this issue was by Dogan and Ozer [20] who derived an empirical
equation using linear regression analysis on some 17 iron–based alloys which undergo the γ → ǫ
martensitic transformation as follows:

MS/K = 246− 5.8wMn + 38.5wSi − 61.5wCr − 5.1wNi + 138wCe − 146wTi − 396wN (1)

where w represents the weight percent of the element identified in the subscript. The equation was
derived for the concentration ranges 13.0–31.5Mn, 4.7–7.0Si, 0–11.6Cr, 0–6.8Ni wt%; Ce, Ti and N
were each present in single alloys with values of 0.3, 0.6 and 0.3wt% respectively. Standard errors
were not quoted but the deviation from a fit to this equation were typically less than ±20◦C.

Dogan and Ozer also considered the use of thermodynamics as described above; however, neither
the origin of the thermodynamic data nor the calculations of MS temperatures were presented in
the paper, so it is not clear what was achieved. The purpose of the present work was to take a
fresh look at this problem given the much larger availability of data due to the increased modern
interest in low density and TRIP (transformation induced plasticity) steels based on the ε phase.
To achieve this we have used a variety of empirical, thermodynamic and first–principles techniques.

2 Data

A search of the literature revealed a large number of sources of data [20–78] which yielded some
328 combinations of chemical composition and martensite–start temperatures. The properties of
the data are summarised in Table 1, and a spreadsheet containing the full details is available on
[79]. The elements included C, Mn, Ni, Cr, Al, Si, Mo, Co, Cu, Nb, Ti, V and W.

The data were subjected to multiple regression analysis to yield the following relationship which
has a standard error of ±26K and a correlation coefficient of 0.9:

MS/K = 576 ± 8− (489 ± 31)wC − (9.1 ± 0.4)wMn − (17.6 ± 2)wNi − (9.2 ± 1)wCr
+(21.3 ± 2)wAl + (4.1± 1)wSi − (19.4 ± 5)wMo − (1± 1)wCo − (41.3 ± 6)wCu
−(50± 18)wNb − (86± 12)wTi − (34± 10)wV − (13± 5)wW (2)

The extent of the fit is illustrated in Fig. 1 and forms a rough method of estimating the martensite–
start temperature but the linear relationship and the implied lack of dependences between the
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independent variables clearly cannot be justified. These particular issues are tackled later in the
text when describing the neural network method, but a more fundamental approach would involve
calculations based on phase stabilities which we address next.

3 Thermodynamic Calculations

By analogy with the transformation of austenite into α′ martensite described in the introduction,
the martensite–start temperature for ε–martensite corresponds to that at which the driving force
∆Gγε achieves a critical value ∆Gγε

MS
. Values of the driving force can in principle be calculated

using standard thermodynamic databases in combination with programs such as ThermoCalc or
MTDATA. In the present work we used the TCFE6 database and ThermoCalc to produce the
results illustrated in Fig. 2, which shows ∆Gγε

MS
as a function of the measured transformation–start

temperatures obtained from the literature. The results are worrying in two respects; first, that
the driving force for a large number of alloys is positive, i.e., it is thermodynamically impossible
for ε to form even though it is actually observed, and second, even when ∆Gγε

MS
is negative, its

magnitude is in many cases very small and possibly insufficient to account for the strain energy of
transformation.

There are two ways in which these results might be understood. The first is that the experimental
measurements of MS temperatures are faulty, but a detailed examination of the original sources of
information indicated that any error in MS is much smaller than required to explain the sign and
magnitude of the free energy change in cases where ∆Gγε

MS
≫ 0. Nevertheless, we discuss later in

this paper, our own experimental data designed to assess experimental error.

The second and more likely explanation is that the database which forms the basis of the thermo-
dynamic calculations described in section 3 is insufficiently populated to represent ε–martensite in
concentrated alloys and at the relatively low temperatures involved. First principles calculations
based on electron theory can be used to check this second explanation, but the calculations are
expensive to conduct so a particular alloy which indicated a large positive ∆Gγǫ = Gε−Gγ in spite
of the observation of martensite was selected for study.

The conventional unit cells of austenite (FCC) and ε (HCP) can both be represented by the stacking
of layers of close–packed planes, with each layer containing 4 atoms with a total of 24 atoms, and
hence six layers, with both phases treated as being non–magnetic. The lattice parameters (a, c) of
the conventional hexagonal unit cell is then determined as a =

√
2aγ and c = 2

√
3aγ . The lattice

parameter of austenite is applied as aγ = 3.59Å[80]. The only difference between the FCC and
HCP forms is then the stacking sequence which is ABCABC and ABABAB, respectively. The alloy
composition is created by an appropriate substitution of Fe atoms with five Mn, two Si and two Cr
atoms, Fig 3.

The Kohn-Sham equation was solved self-consistently in terms of the total energy all-electron
full-potential linearised augmented plane-wave method [81, 82] by using the generalised gradient
approximation for the exchange-correlation potential. The integrations over the three dimensional
Brillouin zone (3D-BZ) were calculated by the tetrahedron method over a 7×7×5 Monkhorst-Pack
mesh [83], which corresponds to 123 k-points inside the irreducible wedge of 3D-BZ. The degree of
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precision was obtained by considering a plane-wave cutoff up to 21Ry, which corresponds to about
3245 linearised augmented plane-waves per each k-point and spin. The wave functions, the charge
densities, and the potential were expanded with l < 8 lattice harmonics inside each muffin-tin
sphere with a radius of 2.20 a.u. for Fe,Mn,Si and Cr. The density and potential in the interstitial
region were depicted by using a star-function cutoff at 340Ry. Self-consistency was assumed when
the root-mean-square distances between the input and output total charges were not more than
2.0 × 10−3 electrons/a.u.3 The sphere radii and Kmax within the whole lattice spacing range were
kept constant, to keep the same degree of convergence for all the lattice constants studied.

The transformation energies at 0 K and zero pressure were calculated to give ∆Gγε as−5.57 kJ mol−1

and −3.49 kJ mol−1 for the transformation in pure iron and 15Fe-5Mn-2Si-2Cr alloy respectively,
where the alloy composition is expressed in terms of the number of atoms out of a total of 24 atoms.
The value for pure iron is remarkably consistent with the −5.45 kJ mol−1 reported in [84] for one
atomsphere of pressure and 0K. based on a thermodynamic assessment. This calculation proves the
need for better thermodynamic data for use in software such as Thermocalc or MTDATA. It is our
intention in the future to undertake a major programme of first principles calculations, including
lattice parameter calculations (as opposed to the fixed parameters assumed here) in order to assess
and enhance the thermodynamic database for the ε phase.

Given the difficulties with the thermodynamic data, the best that can be done is focus on those alloys
where the critical driving force ∆Gγε

MS
< 0 (i.e., a reduction in free energy). Given the availability

of data from binary Fe–Mn alloys with large differences in the manganese concentrations, the
dependence of ∆Gγε

MS
on Mn has been derived as illustrated in Fig. 4a. Calculations carried out to

estimate MS assuming that all other solutes influence only ∆Gγε are shown in Fig. 4b. Note that
we do not understand the functional dependence illustrated in Fig. 4a, and that the accuracy of
the predictions illustrated in Fig. 4b is not impressive even when the analysis is limited to those
cases where the transformation is accompanied by a reduction in free energy.

4 Experiments

The purpose of the work presented here was to check the level of experimental error expected in
measuring the start temperature for ε, given that the volume change of transformation might in
some cases be rather small [85, 86]. A set of six alloys showing a variation in manganese and silicon
concentrations, was prepared as 300 g melts, which were cast and vacuum sealed. They were then
homogenised for 2 days at 1473 K, after which their chemical compositions were measured as listed
in Table 2. Cylindrical dilatometer samples 5mm diameter and 10mm long were machined and
studied using a BAHR DIL805 dilatometer. The samples were heated at 2K s−1 in a vacuum to
873K for 1min, and then quenched at 10K s−1 using argon gas to room temperature.

The results of dilatometric experiments are presented in Fig. 5. A method exists which enables
such data to be interpreted objectively, so that any user analysing the same data should obtain an
identical transformation–start temperature [87]. The technique defines the first onset of transfor-
mation to be that at which a critical strain is achieved relative to the thermal contraction of the
parent phase. In the present work the critical strain has been taken as 1/100 of the total trans-
formation strain determined at ambient temperature for the 16Mn 0Si alloy, equal to −4.6× 10−5.
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Note that although this small offset should be greater than the noise in the data, it is an arbitrary
but reproducible value which is used for all the alloys. It is akin to the arbitrary, small strain used
in defining the proof strength in a gradually yielding tensile test. Optical metallography was used
to confirm the existence of ǫ–martensite and two representative examples are presented in Fig. 6.

Using this method, it is clear from Table 2 that with one exception where the volume change on
transformation is rather small, the uncertainties in the determination of martensite–start temper-
atures are small and cannot explain the major discrepancies found in the ∆Gγε values calculated
using existing thermodynamic databases.

5 Neural Network

The most general method of regression analysis is the neural network, because it is able to capture
non–linear and non–periodic functions of immense complexity without bias on the form of the
function. Comprehensive details of this method have been described elsewhere [88–91] and hence
are not reproduced here except when the information is necessary to reproduce the work.

To create a network which is not too simple, nor so complex that it models the noise in the infor-
mation, the data were partitioned at random into approximately equal training and test sets. The
former was used to create the models and the latter to test their ability to generalise. Once the
appropriate level of complexity is achieved, the entire data can be used to retrain the network with-
out changing its configuration. The results, having gone through these procedures, are illustrated
in Fig. 7 and show that the optimised network performs well on the unseen test data.

We now show an example to illustrate the non–linear capability of the neural network, which
is consistent with expectations from physical metallurgy but would not be captured by a linear
regression equation. The Néel temperature TN of austenite is raised almost linearly by the addition
of manganese [38] and this has an enhanced effect on suppressing the εmartensite–start temperature
if the latter is below TN [92]. That this phenomenon is correctly represented by the neural network
is illustrated in Fig. 8.

6 Austenite Grain Size Effect

It has been shown recently [93] that the dependence of MS on the austenite grain size during the
γ → α′ transformation can be explained quantitatively on the basis of Fisher’s original suggestion
[94] that the number of plates per unit volume needed in order to obtain a detectable fraction of
martensite increases as the austenite grain volume (Vγ) decreases, because the plate size and hence
the volume transformed per plate is reduced with Vγ . This leads to an expression [93]:

Mo
S − T =

1

b
ln

[

1

aVγ

{

exp

(

− ln(1− f)

m

)

− 1

}

+ 1

]

(3)

whereMS → Mo
S as Vγ → ∞, and f is the fraction of martensite, with the volume measured in mm3

the term a can be set to unity, m is the aspect ratio of martensite plates, and b is a constant. This
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relationship enables the amount of martensite to be calculated as a function of undercooling below
MS with the latter defined by the undercooling needed to achieve a detectable fraction fMS

. When
the temperature T is sufficiently below Mo

S the equation reduces to the classical Koistinen and
Marburger relation [95] which is independent of grain size and expressed here in the terminology
of equation 3:

ln{1− f} = −m ln Vγ −mb(Mo
S − T ) (4)

where Koistinen and Marburger obtained mb = 0.011K−1 for the γ → α′ transformation. The two
relationships in fact only differ in the narrow temperature range at the beginning of transformation.

There exist three sets of experiments where ε–martensite has been studied as a function of the
austenite grain size [29, 39, 62]. Fig. 9a shows that all three sets of data can be used to derive
b = 0.33, and taking the aspect ratio of ε as m = 0.03 [39], mb = 0.01K−1, a value which is
remarkably similar to the original due to Koistinen and Marburger for α′ martensite. This may
well be a coincidence but the fact that these values are not dramatically different nevertheless
inspires confidence in the analysis. The values of Mo

S are also obtained from the intercepts on the
vertical axes of Fig. 9a. The final results are plotted in Fig. 9b, showing that all the data can be
rationalised in terms of equation 3. Jiang et al. [62] in their work concluded that there is no grain
size dependence of MS for ε, but Fig. 9b shows that this is because the grain size was not varied
sufficiently in their experiments.

7 Conclusions

The thermodynamic method used so successfully in predicting the MS temperature for the γ → α′

transformation cannot be implemented fully for ε because of the availability of thermodynamic
data. A reasonable assumption can be made that it is the dataset for ε which is lacking since the
γ phase is well characterised. This is partly supported by a limited calculation done using first
principles, but to do this generally is an expensive option and the focus perhaps needs to be on
specific cases of technological interest. A limited number of experiments on six combinations of
manganese and silicon supports the conclusion that the thermodynamic data are wanting, and the
problem does not lie in potential inaccuracies in the measurement of martensite–start temperatures.

A linear regression equation has been derived based on a large experimental dataset accumulated
from the published literature, as a rough method for estimating the γ → ε martensite–start tem-
peratures. This is unable to capture the non–linear effects apparent in the experimental data,
for example the dependence on the manganese concentration. Therefore, a corresponding neural
network model has also been created, which should be a better tool than the linear method.

It has been demonstrated that the austenite grain size dependence of the start–temperature for
ε martensite can be rationalised in terms of existing theory which is based on the fact that the
minimum detectable quantity of transformation, which defines MS , is a function of the grain size.

The neural network models, thermodynamic calculations and the full set of compiled data can be
downloaded from [79].
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Table 1: Dataset statistics, rounded off to significant figures after the decimal point, for a total of
328 separate measurements as described in the text. The concentrations of solutes are in wt%.

Minimum Maximum Average Standard deviation

C 0 0.35 0.02 0.05

Mn 11.2 35.9 22.2 6

Ni 0 6.8 0.47 1.5

Cr 0 13.7 1.5 3.2

Al 0 5 0.16 0.8

Si 0 7.1 2.1 2.5

Mo 0 4.46 0.03 0.3

Co 0 8 0.29 1.2

Cu 0 3.1 0.03 0.25

Nb 0 1.21 0.01 0.08

Ti 0 1.72 0.01 0.12

V 0 2.2 0.01 0.15

W 0 4.48 0.03 0.31

MS / K 167 467 352 60
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Table 2: Alloy compositions and measured MS temperatures

Alloy designation Mn / wt% Si / wt% MS / K

16Mn 0 Si 15.8 0.0 410± 3

16Mn 3 Si 15.6 2.7 437± 7

16Mn 6 Si 16.0 5.4 422± 1

25Mn 0 Si 24.8 0.1 < 293

25Mn 3 Si 25.3 2.8 343± 2

25Mn 6 Si 25.0 5.2 441± 1

12



Figure 1: The ε–martensite MS temper-
atures estimated using equation 2, versus
measured values.

Figure 2: The calculated free energy change
accompanying the formation of ε–martensite
at the measured MS temperature. Notice
that the scales above and below the ab-
scissa are different. The samples for which
∆Gγε

MS
≥ 0 are generally those which have

large total solute concentrations, for exam-
ple, Fe–26Mn–5Cr–6Si wt%.
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(a) (b)

Figure 3: The supercells used in the first–principles calculations.

(a) (b)

Figure 4: Thermodynamic method applied only to those alloys for which ∆Gγε
MS

< 0 using current
thermodynamic databases. (a) Dependence of ∆Gγε

MS
on the manganese concentration. (b) An

illustration of the accuracy with which predictions can be made assuming that the critical driving
force at MS varies only with the Mn concentration.
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Figure 5: Heating and cooling dilatomet-
ric data for all of the experimental alloys.
Note that there is a contraction when ε–
martensite forms from austenite. The data
here are presented with a compressed verti-
cal axis for the sake of brevity, but the full,
high–resolution set is available on [79].

(a) (b)

Figure 6: Optical micrographs showing ε martensite. (a) 16Mn 0Si alloy. (b) 25Mn 3Si alloy.
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(a) (b)

Figure 7: Illustration of the fit achieved with a neural network of optimum complexity. The error
bars represent ±1σ modelling uncertainty. (a) Data used to create the network. (b) Unseen data
used to test the network.

(a) (b)

Figure 8: Variation in the martensite–start temperature in Fe–Mn alloys as a function of the
manganese concentration. (a) Calculated using neural network. (b) Measured values from published
work, together with the calculated curve from (a). The Néel temperature (TN ) data are from [38].
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(a) (b)

Figure 9: Analysis of the austenite grain size dependence of MS for ε–martensite. The circles,
crosses and squares are data from [29], [39] and [62] respectively. (a) Linear regression to derive b
and Mo

S . (b) Comparison between measured data and curve calculated using equation 3.
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