skip to content
 
Date: 
Wednesday, 24 April, 2019 - 11:00
Event Location: 

Goldsmiths' Lecture Room 1

Prof. Michele Ceriotti (Laboratory of Computational Science and Modelling, EPFL) 

Abstract:

Statistical regression techniques have become very fashionable as a tool to predict the properties of systems at the atomic scale, sidestepping much of the computational cost of first-principles simulations and making it possible to perform simulations that require thorough statistical sampling without compromising on the accuracy of the electronic structure model.

In this talk I will argue how data-driven modelling can be rooted in a mathematically rigorous and physically-motivated framework, and how this is beneficial to the accuracy and the transferability of the model. I will also highlight how machine learning – despite amounting essentially to data interpolation – can provide important physical insights on the behaviour of complex systems, on the synthesizability and on the structure-property relations of materials.

I will give examples concerning all sorts of atomistic systems, from semiconductors to molecular crystals, and properties as diverse as drug-protein interactions, dielectric response of aqueous systems and NMR chemical shielding in the solid state.