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Preface

First Edition

A large part of crystallography deals with the way in which atoms are arranged in single crys-
tals. On the other hand, a knowledge of the relationships between crystals in a polycrystalline
material can be fascinating from the point of view of materials science. It is this aspect of
crystallography which is the subject of this monograph. The monograph is aimed at both
undergraduates and graduate students and assumes only an elementary knowledge of crystal-
lography. Although use is made of vector and matrix algebra, readers not familiar with these
methods should not be at a disadvantage after studying appendix 1. In fact, the mathematics
necessary for a good grasp of the subject is not very advanced but the concepts involved can
be difficult to absorb. It is for this reason that the book is based on worked examples, which
are intended to make the ideas less abstract.

Due to its wide-ranging applications, the subject has developed with many different schemes
for notation and this can be confusing to the novice. The extended notation used throughout
this text was introduced first by Mackenzie and Bowles; I believe that this is a clear and
unambiguous scheme which is particularly powerful in distinguishing between representations
of deformations and axis transformations.

The monograph begins with an introduction to the range of topics that can be handled using
the concepts developed in detail in later chapters. The introduction also serves to familiarise
the reader with the notation used. The other chapters cover orientation relationships, aspects
of deformation, martensitic transformations and interfaces.

In preparing this book, I have benefited from the support of Professors R. W. K. Honeycombe,
Professor D. Hull, Dr F. B. Pickering and Professor J. Wood. I am especially grateful to
Professor J. W. Christian and Professor J. F. Knott for their detailed comments on the text,
and to many students who have over the years helped clarify my understanding of the subject.
It is a pleasure to acknowledge the unfailing support of my family.

April 1986

Second Edition

I am delighted to be able to publish this revised edition in electronic form for free access. It is
a pleasure to acknowledge valuable comments by Steven Vercammen.

January 2001, updated July 2008
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1 Introduction

Crystallographic analysis, as applied in materials science, can be classified into two main
subjects; the first of these has been established ever since it was realised that metals have a
crystalline character, and is concerned with the clear description and classification of atomic
arrangements. X-ray and electron diffraction methods combined with other structure sensitive
physical techniques have been utilised to study the crystalline state, and the information
obtained has long formed the basis of investigations on the role of the discrete lattice in
influencing the behaviour of commonly used engineering materials.

The second aspect, which is the subject of this monograph, is more recent and took off in earnest
when it was noticed that accurate experimental data on martensitic transformations showed
many apparent inconsistencies. Matrix methods were used in resolving these difficulties, and
led to the formulation of the phenomenological theory of martensite’2. Similar methods have
since widely been applied in metallurgy; the nature of shape changes accompanying displacive
transformations and the interpretation of interface structure are two examples. Despite the
apparent diversity of applications, there is a common theme in the various theories, and it is
this which makes it possible to cover a variety of topics in this monograph.

Throughout this monograph, every attempt has been made to keep the mathematical content
to a minimum and in as simple a form as the subject allows; the student need only have
an elementary appreciation of matrices and of vector algebra. Appendix 1 provides a brief
revision of these aspects, together with references to some standard texts available for further
consultation.

The purpose of this introductory chapter is to indicate the range of topics that can be tackled
using the crystallographic methods, while at the same time familiarising the reader with vital
notation; many of the concepts introduced are covered in more detail in the chapters that follow.
It is planned to introduce the subject with reference to the martensite transformation in steels,
which not only provides a good example of the application of crystallographic methods, but
which is a transformation of major practical importance.

At temperatures between 1185 K and 1655 K, pure iron exists as a face—centred cubic (FCC)
arrangement of iron atoms. Unlike other FCC metals, lowering the temperature leads to the
formation of a body—centred cubic (BCC) allotrope of iron. This change in crystal structure
can occur in at least two different ways. Given sufficient atomic mobility, the FCC lattice can
undergo complete reconstruction into the BCC form, with considerable unco—ordinated diffu-
sive mixing—up of atoms at the transformation interface. On the other hand, if the FCC phase
is rapidly cooled to a very low temperature, well below 1185 K, there may not be enough time
or atomic mobility to facilitate diffusional transformation. The driving force for transformation
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nevertheless increases with undercooling below 1185 K, and the diffusionless formation of BCC
martensite eventually occurs, by a displacive or “shear” mechanism, involving the systematic
and co—ordinated transfer of atoms across the interface. The formation of this BCC martensite
is indicated by a very special change in the shape of the austenite () crystal, a change of shape
which is beyond that expected just on the basis of a volume change effect. The nature of this
shape change will be discussed later in the text, but for the present it is taken to imply that the
transformation from austenite to ferrite occurs by some kind of a deformation of the austenite
lattice. It was E. C. Bain ® who in 1924 introduced the concept that the structural change from
austenite to martensite might occur by a homogeneous deformation of the austenite lattice, by
some kind of an upsetting process, the so—called Bain Strain.

Definition of a Basis

Before attempting to deduce the Bain Strain, we must establish a method of describing the
austenite lattice. Fig. 1a shows the FCC unit cell of austenite, with a vector u drawn along the
cube diagonal. To specify the direction and magnitude of this vector, and to relate it to other
vectors, it is necessary to have a reference set of co—ordinates. A convenient reference frame
would be formed by the three right-handed orthogonal vectors a,, a, and a4, which lie along
the unit cell edges, each of magnitude a., the lattice parameter of the austenite. The term
orthogonal implies a set of mutually perpendicular vectors, each of which can be of arbitrary
magnitude; if these vectors are mutually perpendicular and of unit magnitude, they are called
orthonormal.

as by

BAIN
STRAIN
—_—
(c) (d)
Body-centered Body-centered
tetragonal cubic martensite

austenite

Fig. 1: (a) Conventional FCC unit cell. (b) Relation between FCC and BCT
cells of austenite. (c) BCT cell of austenite. (d) Bain Strain deforming the

BCT austenite lattice into a BCC martensite lattice.



; (i = 1,2,3) are called the basis vectors, and the basis itself may be
identified by a basis symbol, ‘A’ in this instance.

The set of vectors a;

The vector u can then be written as a linear combination of the basis vectors:
u = u ay + uyay + uzag,

where u, 4y and ug are its components, when u is referred to the basis A. These components
can conveniently be written as a single-row matrix (u; uy u3) or as a single-column matrix:

Uy
Uy
Us

This column representation can conveniently be written using square brackets as: [u; uy us)].
It follows from this that the matrix representation of the vector u (Fig. 1la), with respect to
the basis A is

(W A) = (uy uy ug) =(111)

where u is represented as a row vector. u can alternatively be represented as a column vector
[Asu] = [uy uy ug) = [111]

The row matrix (u;A) is the transpose of the column matrix [A;u], and vice versa. The
positioning of the basis symbol in each representation is important, as will be seen later. The
notation, which is due to Mackenzie and Bowles?, is particularly good in avoiding confusion
between bases.

Co—-ordinate Transformations

From Fig. 1a, it is evident that the choice of basis vectors a, is arbitrary though convenient;
Fig. 1b illustrates an alternative basis, a body—centred tetragonal (BCT) unit cell describing
the same austenite lattice. We label this as basis ‘B’, consisting of basis vectors b;, b, and b,
which define the BCT unit cell. It is obvious that [B; u] = [0 2 1], compared with [A;u] = [111].
The following vector equations illustrate the relationships between the basis vectors of A and
those of B (Fig. 1):

a; = 1b; + 1b, 4 Ob,

a, = 1b; + 1b, + Obg
a; = Ob; + Ob, + 1by

These equations can also be presented in matrix form as follows:
1 10

(aj ayaz) =(b; bybg) x (1 1 0 (1)
0 0 1

This 3x3 matrix representing the co—ordinate transformation is denoted (B J A) and transforms
the components of vectors referred to the A basis to those referred to the B basis. The first
column of (B J A) represents the components of the basis vector a;, with respect to the basis
B, and so on.
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The components of a vector u can now be transformed between bases using the matrix (B J A)
as follows:
[Biu] = (B J A)[A;u] (2a)

Notice the juxtapositioning of like basis symbols. If (A J’ B) is the transpose of (B J A), then
equation 2a can be rewritten as

(u;B) = (w;A)(A J' B) (2b)
Writing (A J B) as the inverse of (B J A), we obtain:
[Asu] = (A J B)[B (20)

and
(w;A) = (i;B)(B J" A) (2d)

It has been emphasised that each column of (B J A) represents the components of a basis
vector of A with respect to the basis B (i.e. a; = J;; by + J5; by + J3, bs ete.). This procedure
is also adopted in (for example) Refs. 4,5. Some texts use the convention that each row of
(B J A) serves this function (i.e. a; = J;;b; + Jj,by + J;3bg etc.). There are others where a
mixture of both methods is used — the reader should be aware of this problem.

Example 1: Co—ordinate transformations

Two adjacent grains of austenite are represented by bases ‘A’ and ‘B’ respectively. The base
vectors a; of A and b, of B respectively define the FCC unit cells of the austenite grains
concerned. The lattice parameter of the austenite is a, so that |a,;| = |b;| = a.,. The grains are
orientated such that [0 0 1] 4]| [0 0 1]z, and [1 0 0] 5 makes an angle of 45° with both [1 0 0] 4
and [0 1 0] 4. Prove that if u is a vector such that its components in crystal A are given by
[A;u] = [v/2 2v/2 0], then in the basis B, [B;u] = [3 1 0]. Show that the magnitude of u (i.e.
|u|) does not depend on the choice of the basis.

010g
010,
45°
100g
100,

Fig. 2: Diagram illustrating the relation between the bases A and B.

Referring to Fig. 2, and recalling that the matrix (B J A) consists of three columns, each
column being the components of one of the basis vectors of A, with respect to B, we have

[B;a;] = [ cos45 —sin45 0 cos45  sin4b5 0
[B;a,] = [ sin45 cos45 0] and (BJA)=| —sin45 cos45 0
Bias]= [ 0 0 1] 0 0 1



From equation 2a, [B;u] = (B J A)[A;u], and on substituting for [A;u] = [v/2 2v/2 0], we get
[B;u] = [3 1 0]. Both the bases A and B are orthogonal so that the magnitude of u can be
obtained using the Pythagoras theorem. Hence, choosing components referred to the basis B,
we get:

u* = (3, [)* + (Iby/)* = 103

With respect to basis A,
> = (V2[a,|)* + (2v2]a,))* = 1042

Hence, |u| is invariant to the co-ordinate transformation. This is a general result, since a
vector is a physical entity, whose magnitude and direction clearly cannot depend on the choice
of a reference frame, a choice which is after all, arbitrary.

We note that the components of (B J A) are the cosines of angles between b; and a; and

that (A J' B) = (A J B)™'; a matrix with these properties is described as orthogonal (see
appendix). An orthogonal matrix represents an axis transformation between like orthogonal
bases.

The Reciprocal Basis

The reciprocal lattice that is so familiar to crystallographers also constitutes a special co-
ordinate system, designed originally to simplify the study of diffraction phenomena. If we
consider a lattice, represented by a basis symbol A and an arbitrary set of basis vectors a;, a,
and ag, then the corresponding reciprocal basis A* has basis vectors aj, a5 and a3, defined by
the following equations:

aj = (ay Nag)/(a;.a; Aay) (3a)
a; = (agAay)/(a;.a; Aay) (3b)
az = (a; ANay)/(a;.a; Aay) (3¢)

In equation 3a, the term (a,.a, Aaz) represents the volume of the unit cell formed by a;, while
the magnitude of the vector (a, A a;) represents the area of the (1 0 0) 4 plane (see appendix).
Since (a, A ag) points along the normal to the (1 0 0), plane, it follows that aj also points
along the normal to (1 0 0) , and that its magnitude |a}| is the reciprocal of the spacing of the
(1 00), planes (Fig. 3).

The reciprocal lattice is useful in crystallography because it has this property; the components

of any vector referred to the reciprocal basis represent the Miller indices of a plane whose normal
is along that vector, with the spacing of the plane given by the inverse of the magnitude of
that vector. For example, the vector (u; A*) = (1 2 3) is normal to planes with Miller indices
(12 3) and interplanar spacing 1/|u|. Throughout this text, the presence of an asterix indicates
reference to the reciprocal basis. Wherever possible, plane normals will be written as row
vectors, and directions as column vectors.

We see from equation 3 that
a;a; =1 when i=j, and aja;=0 when i#j

or in other words,
a,a; =0, (4a)

L) )
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'

.

a3

Fig. 3: The relationship between aj and a,. The vector aj lies along the
direction OA and the volume of the parallelepiped formed by the basis vectors

a; is given by a;.a,/A as, the area OPQR being equal to |a2/\ a3|.

6;; is the Kronecker delta, which has a value of unity when i = j and is zero when ¢ # j (see
appendix).

Emphasising the fact that the reciprocal lattice is really just another convenient co—ordinate
system, a vector u can be identified by its components [A;u] = [u; uy us] in the direct lattice
or (u; A*) = (u} v u}) in the reciprocal lattice. The components are defined as usual, by the
equations:
u = u;a; + Uya, + uzas (4b)
u = ujaj + usa; + uza; (4c)

The magnitude of u is given by
lul? = u.u
= (uya; +uyay + ugay).(ujay + uza; + uzay)
Using equation 4a, it is evident that

ul? = (uyui +ugud + ugu3)

~ (wA")[Asul (4e)

This is an important result, since it gives a new interpretation to the scalar, or “dot” product
between any two vectors u and v since

uv = (4 A")[A;v] = (v; A")[A; u] (4e)

Homogeneous Deformations

We can now return to the question of martensite, and how a homogeneous deformation might
transform the austenite lattice (parameter a.) to a BCC martensite (parameter a,, ). Referring

to Fig. 1, the basis ‘A’ is defined by the basis vectors a,, each of magnitude a., and basis

79 0%
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‘B’ is defined by basis vectors b, as illustrated in Fig. 1b. Focussing attention on the BCT
representation of the austenite unit cell (Fig. 1b), it is evident that a compression along the
[0 0 1] axis, coupled with expansions along [1 0 0]z and [0 1 0]z would accomplish the
transformation of the BCT austenite unit cell into a BCC « cell. This deformation, referred
to the basis B, can be written as:

="M= \/ﬁ(aa/a"y)
along [1 0 0] 5 and [0 1 0]z respectively and

N3 = a’oz/a"y
along the [0 0 1] 5 axis.

The deformation just described can be written as a 3 x 3 matrix, referred to the austenite
lattice. In other words, we imagine that a part of a single crystal of austenite undergoes
the prescribed deformation, allowing us to describe the strain in terms of the remaining (and
undeformed) region, which forms a fixed reference basis. Hence, the deformation matrix does
not involve any change of basis, and this point is emphasised by writing it as (A S A), with
the same basis symbol on both sides of S:

[A;v] = (A'S A)[A;u] (5)

where the homogeneous deformation (A S A) converts the vector [A;u] into a new vector [A;v],
with v still referred to the basis A.

The difference between a co-ordinate transformation (B J A) and a deformation matrix (A S A)
is illustrated in Fig. 4, where a; and b, are the basis vectors of the bases A and B respectively.

(BJ A (&S A)

Fig. 4: Difference between co—ordinate transformation and deformation ma-

trix.

We see that a major advantage of the Mackenzie-Bowles notation is that it enables a clear
distinction to be made between 3 x 3 matrices which represent changes of axes and those which
represent physical deformations referred to one axis system.

The following additional information can be deduced from Fig. 1:

Vector components before Bain strain  Vector components after Bain strain

[100], [, 0 04
(010], [0 1y 0],
001], (00 ms4
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and the matrix (A S A) can be written as

mo 0 0
(ASA)=(0 n, O
0 0 4

Each column of the deformation matrix represents the components of the new vector (referred
to the original A basis) formed as a result of the deformation of a basis vector of A.

The strain represented by (A S A) is called a pure strain since its matrix representation (A S A)
is symmetrical. This also means that it is possible to find three initially orthogonal directions
(the principal axes) which remain orthogonal and unrotated during the deformation; a pure
deformation consists of simple extensions or contractions along the principal axes. A vector
parallel to a principal axis is not rotated by the deformation, but its magnitude may be altered.
The ratio of its final length to initial length is the principal deformation associated with that
principal axis. The directions [1 0 0], [0 1 0] 5 and [0 0 1] 5 are therefore the principal axes of
the Bain strain, and 7, the respective principal deformations. In the particular example under
consideration, 1, = 7, so that any two perpendicular lines in the (0 0 1)z plane could form
two of the principal axes. Since as|| b, and since a; and a, lie in (0 0 1), it is clear that the
vectors a; must also be the principal axes of the Bain deformation.

Since the deformation matrix (A S A) is referred to a basis system which coincides with the
principal axes, the off-diagonal components of this matrix must be zero. Column 1) of the
matrix (A S A) represents the new co-ordinates of the vector [1 0 0], after the latter has
undergone the deformation described by (A S A), and a similar rationale applies to the other
columns. (A S A) deforms the FCC ~ lattice into a BCC « lattice, and the ratio of the final
to initial volume of the material is simply 7,717,775 (or more generally, the determinant of the
deformation matrix). Finally, it should be noted that any tetragonality in the martensite can
readily be taken into account by writing 7, = c/av, where c/a,, is the aspect ratio of the BCT
martensite unit cell.

Example 2: The Bain Strain

Given that the principal distortions of the Bain strain (A S A), referred to the crystallographic
axes of the FCC 7 lattice (lattice parameter a. ), are n; = 1, = 1.123883, and n; = 0.794705,
show that the vector

[A;x] = [-0.645452 0.408391 0.645452]

remains undistorted, though not unrotated as a result of the operation of the Bain strain. Fur-
thermore, show that for x to remain unextended as a result of the Bain strain, its components
x,; must satisfy the equation

(m; —V)zi+ (3 —V)z3+ (13 —1)a3 =0 (6a)

As a result of the deformation (A S A), the vector x becomes a new vector y, according to the
equation

(A S A)A;x] = [Ayy] = [m2y nyxy nyxs] = [—0.723412 0.458983 0.512944]

Now,
[x[? = (x; A")[Asx] = @} (2] + 23 + a3) (6b)

8



and,
> = (v; A9)[Asy] = a2 (yf + 3 +v3) (6¢)

Using these equations, and the numerical values of z; and y, obtained above, it is easy to show
that x| = |y|. It should be noted that although x remains unextended, it is rotated by the
strain (A S A), since z; # y;. On equating (6b) to (6¢) with y, = n,x,, we get the required
equation 6a. Since n; and 7, are equal and greater than 1, and since 14 is less than unity,
equation 6a amounts to the equation of a right—circular cone, the axis of which coincides with
[00 1] 4. Any vector initially lying on this cone will remain unextended as a result of the Bain
Strain.

This process can be illustrated by considering a spherical volume of the original austenite
lattice; (A S A) deforms this into an ellipsoid of revolution, as illustrated in Fig. 5. Notice that
the principal axes (a;) remain unrotated by the deformation, and that lines such as ab and cd
which become a’'b" and ¢’d’ respectively, remain unextended by the deformation (since they are
all diameters of the original sphere), although rotated through the angle 6. The lines ab and
cd of course lie on the initial cone described by equation 6a. Suppose now, that the ellipsoid
resulting from the Bain strain is rotated through a right-handed angle of 8, about the axis a,,
then Fig. 5c illustrates that this rotation will cause the initial and final cones of unextended
lines to touch along cd, bringing c¢d and c¢’d’ into coincidence. If the total deformation can
therefore be described as (A S A) combined with the above rigid body rotation, then such a
deformation would leave the line cd both unrotated and unextended; such a deformation is
called an invariant-line strain. Notice that the total deformation, consisting of (A S A) and a
rigid body rotation is no longer a pure strain, since the vectors parallel to the principal axes
of (A'S A) are rotated into the new positions a’; (Fig. 5¢).

It will later be shown that the lattice deformation in a martensitic transformation must contain
an invariant line, so that the Bain strain must be combined with a suitable rigid body rotation
in order to define the total lattice deformation. This explains why the experimentally observed
orientation relationship (see Example 5) between martensite and austenite does not correspond
to that implied by Fig. 1. The need to have an invariant line in the martensite-austenite
interface means that the Bain Strain does not in itself constitute the total transformation strain,
which can be factorised into the Bain Strain and a rigid body rotation. It is this total strain
which determines the final orientation relationship although the Bain Strain accomplishes the
total FCC to BCC lattice change. It is emphasised here that the Bain strain and the rotation
are not physically distinct; the factorisation of the the total transformation strain is simply a
mathematical convenience.

Interfaces

A vector parallel to a principal axis of a pure deformation may become extended but is not
changed in direction by the deformation. The ratio n of its final to initial length is called a
principal deformation associated with that principal axis and the corresponding quantity (n—1)
is called a principal strain. Example 2 demonstrates that when two of the principal strains of
the pure deformation differ in sign from the third, all three being non—zero, it is possible to
obtain a total strain which leaves one line invariant. It intuitively seems advantageous to have
the invariant—line in the interface connecting the two crystals, since their lattices would then
match exactly along that line.

A completely undistorted interface would have to contain two non—parallel directions which
are invariant to the total transformation strain. The following example illustrates the char-

9
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Fig. 5: (a) and (b) represent the effect of the Bain Strain on austenite, repre-
sented initially as a sphere of diameter ab which then deforms into an ellipsoid
of revolution. (c) shows the invariant—line strain obtained by combining the

Bain Strain with a rigid body rotation.

acteristics of such a transformation strain, called an invariant—plane strain, which allows the
existence of a plane which remains unrotated and undistorted during the deformation.

Example 3: Deformations and Interfaces

A pure strain (Y Q Y), referred to an orthonormal basis Y whose basis vectors are parallel to
the principal axes of the deformation, has the principal deformations 7, = 1.192281, n, =1
and n; = 0.838728. Show that (Y Q Y) combined with a rigid body rotation gives a total
strain which leaves a plane unrotated and undistorted.

Because (Y Q Y) is a pure strain referred to a basis composed of unit vectors parallel to its
principal axes, it consists of simple extensions or contractions along the basis vectors y;, y,
and y,. Hence, Fig. 6 can be constructed as in the previous example. Since 7, = 1, ef]| y,
remains unextended and unrotated by (Y Q Y), and if a rigid body rotation (about fe as
the axis of rotation) is added to bring cd into coincidence with ¢/d’, then the two vectors ef
and ab remain invariant to the total deformation. Any combination of ef and ab will also
remain invariant, and hence all lines in the plane containing ef and ab are invariant, giving
an invariant plane. Thus, a pure strain when combined with a rigid body rotation can only
generate an invariant—plane strain if two of its principal strains have opposite signs, the third
being zero. Since it is the pure strain which actually accomplishes the lattice change (the rigid
body rotation causes no further lattice change), any two lattices related by a pure strain with
these characteristics may be joined by a fully coherent interface.

(Y QY) actually represents the pure strain part of the total transformation strain required to
change a FCC lattice to an HCP (hexagonal close—packed) lattice, without any volume change,
by shearing on the (1 1 1), plane, in the [1 1 2], direction, the magnitude of the shear being
equal to half the twinning shear (see Chapter 3). Consistent with the proof given above, a fully

10
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HCP

(a) (b) (c)

Fig. 6: Illustration of the strain (Y Q Y), the undeformed crystal represented
initially as a sphere of diameter ef. (c) illustrates that a combination of

(Y Q Y) with a rigid body rotation gives an invariant-plane strain.

coherent interface is observed experimentally when HCP martensite is formed in this manner.

11



2 Orientation Relations

A substantial part of research on polycrystalline materials is concerned with the accurate deter-
mination, assessment and theoretical prediction of orientation relationships between adjacent
crystals. There are obvious practical applications, as in the study of anisotropy and texture
and in various mechanical property assessments. The existence of a reproducible orientation
relation between the parent and product phases might determine the ultimate morphology of
any precipitates, by allowing the development of low interfacia—energy facets. It is possible
that vital clues about nucleation in the solid state might emerge from a detailed examination
of orientation relationships, even though these can usually only be measured when the crystals
concerned are well into the growth stage. Needless to say, the properties of interfaces depend
critically on the relative dispositions of the crystals that they connect.

Perhaps the most interesting experimental observation is that the orientation relationships
that are found to develop during phase transformations (or during deformation or recrystalli-
sation experiments) are usually not random®=®. The frequency of occurrence of any particular
orientation relation usually far exceeds the probability of obtaining it simply by taking the two
separate crystals and joining them up in an arbitrary way.

This indicates that there are favoured orientation relations, perhaps because it is these which
allow the best fit at the interface between the two crystals. This would in turn reduce the
interface energy, and hence the activation energy for nucleation. Nuclei which, by chance,
happen to be orientated in this manner would find it relatively easy to grow, giving rise to the
non-random distribution mentioned earlier.

On the other hand, it could be the case that nuclei actually form by the homogeneous defor-
mation of a small region of the parent lattice. The deformation, which transforms the parent
structure to that of the product (e.g. Bain strain), would have to be of the kind which minimises
strain energy. Of all the possible ways of accomplishing the lattice change by homogeneous
deformation, only a few might satisfy the minimum strain energy criterion — this would again
lead to the observed non—random distribution of orientation relationships. It is a major phase
transformations problem to understand which of these factors really determine the existence
of rational orientation relations. In this chapter we deal with the methods for adequately
describing the relationships between crystals.

Worked Examples in the Geometry of Crystals by H. K. D. H. Bhadeshia, 2nd edition, 2001.
ISBN 0-904357-94-5. First edition published in 1987 by the Institute of Metals, 1 Carlton
House Terrace, London SW1Y 5DB.
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Cementite in Steels

Cementite (Fe;C, referred to as 6) is probably the most common precipitate to be found in
steels; it has a complex orthorhombic crystal structure and can precipitate from supersaturated
ferrite or austenite. When it grows from ferrite, it usually adopts the Bagaryatski® orientation
relationship (described in Example 4) and it is particularly interesting that precipitation can
occur at temperatures below 400 K in times too short to allow any substantial diffusion of iron
atoms'?, although long range diffusion of carbon atoms is clearly necessary and indeed possible.
It has therefore been suggested that the cementite lattice may sometimes be generated by the
deformation of the ferrite lattice, combined with the necessary diffusion of carbon into the
appropriate sites!®:11,

Shackleton and Kelly'? showed that the plane of precipitation of cementite from ferrite is
{101},]] {112},. Thisis consistent with the habit plane containing the direction of maximum
coherency between the 6 and « lattices 10, i.e. <010 >, | <111>,. Cementite formed
during the tempering of martensite adopts many crystallographic variants of this habit plane
in any given plate of martensite; in lower bainite it is usual to find just one such variant, with
the habit plane inclined at some 60° to the plate axis. The problem is discussed in detail in
ref. 13. Cementite which forms from austenite usually exhibits the Pitsch'* orientation relation
with [0 0 1], [2 2 5], and [1 0 0]y[| [5 5 4]., and a mechanism which involves the intermediate
formation of ferrite has been postulated'? to explain this orientation relationship.

Example 4: The Bagaryatski Orientation Relationship

Cementite (f) has an orthorhombic crystal structure, with lattice parameters a = 4.5241, b =
5.0883 and ¢ = 6.7416 A along the [1 0 0], [0 1 0] and [0 0 1] directions respectively. When
cementite precipitates from ferrite (o, BCC structure, lattice parameter a, = 2.8662 A), the
lattices are related by the Bagaryatski orientation relationship, given by:

[100Jp)l [0T1],, [010]p [1TT],, [001]p] [211], (7a)

(i) Derive the co-ordinate transformation matrix (o J ) representing this orientation
relationship, given that the basis vectors of 8 and « define the orthorhombic and
BCC unit cells of the cementite and ferrite, respectively.

(i) Published stereograms of this orientation relation have the (0 2 3), plane exactly
parallel to the (1 3 3), plane. Show that this can only be correct if the ratio

b/c=82/15.

The information given concerns just parallelisms between vectors in the two lattices. In order
to find (a J 0), it is necessary to ensure that the magnitudes of the parallel vectors are also
equal, since the magnitude must remain invariant to a co—ordinate transformation. If the
constants k, g and m are defined as

L loo,

a
_ = =1.116120
0T, a,v2
1 b
g = ”0_9}9' = = 1.024957 (7b)
NTI,]  a,V3
m= 100 sl ¢ 60040

T2 ae
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then multiplying [0 1 1], by k makes its magnitude equal to that of [1 0 0],; the constants g
and m can similarly be used for the other two « vectors.

Recalling now our definition a co—ordinate transformation matrix, we note that each column
of (o J 0) represents the components of a basis vector of 6 in the « basis. For example, the
first column of (o J ) consists of the components of [1 0 0], in the a basis [0 k k]. It follows
that we can derive (a J €) simply by inspection of the relations 7a,b, so that

0.000000 1.024957  1.920485
(J6)=[ —1.116120 —1.024957 0.960242
1.116120  —1.024957 0.960242

The transformation matrix can therefore be deduced simply by inspection when the orientation
relationship (7a) is stated in terms of the basis vectors of one of the crystals concerned (in this
case, the basis vectors of 6 are specified in 7a). On the other hand, orientation relationships
can, and often are, specified in terms of vectors other then the basis vectors (see example 5).
Also, electron diffraction patterns may not include direct information about basis vectors. A
more general method of solving for (a J ) is presented below; this method is independent of
the vectors used in specifying the orientation relationship:

From equation 2a and the relations 7a,b we see that

0 k k, = (a«JO[00],
g 9 9o = (xJO)010] (7c)
2m m m], = («J@)[oo01],
These equations can written as:
0 g 2m Ji Jia s 1 0 0
E'g m | =1|Jy Jag Jos 010 (7d)
kg m Jg1 J39  Jss 0 0 1

where the J;; (i = 1,2,3 & j = 1,2, 3) are the elements of the matrix (« J §). From equation 7d,
it follows that

0 g 2m 0 1.024957  1.920485
(aJO)=k g m | =] —1116120 —1.024957 0.960242
kg m 1.116120 —1.024957 0.960242

It is easy to accumulate rounding off errors in such calculations and essential to use at least
six figures after the decimal point.

To consider the relationships between plane normals (rather than directions) in the two lattices,
we have to discover how vectors representing plane normals, (always referred to a reciprocal
basis) transform. From equation 4, if u is any vector,

[ul? = (u; o) [ u] = (u;6%)[6;u]
or (w;a™)(a J 0)[0;u] = (u;0%)[0;u]
giving (w;a%)(a J 0) = (u;07) (7e)
(u; ") = (w;67)(0 J )
where @Ja)=(aJo)?



0 —3gm 3gm 0 —0.447981  0.447981
omk —2mk —2mk | = | 0.325217 —0.325217 —0.325217
29k gk gk 0.347135  0.173567  0.173567

0Ja)= Ggmk

If (u;0*) = (0 2 3) is now substituted into equation 7e, we get the corresponding vector

1
(u;a*) = W(ng —4dmk 3gk + 4mk 3gk + 4mk)
For this to be parallel to a (1 3 3) plane normal in the ferrite, the second and third components

must equal three times the first; i.e. 3(6gk — 4mk) = (3gk + 4mk), which is equivalent to
b/c = 8v/2/15, as required.

Finally, it should be noted that the determinant of (a J ) gives the ratio (volume of 6 unit
cell) /(volume of a unit cell). If the co—ordinate transformation simply involves a rotation of
bases (e.g. when it describes the relation between two grains of identical structure), then the
matrix is orthogonal and its determinant has a value of unity for all proper rotations (i.e. not
involving inversion operations). Such co-ordinate transformation matrices are called rotation
matrices.

Fig. 7: Stereographic representation of the Bagaryatski orientation relation-

ship between ferrite and cementite in steels, where

[L00J[ [0T1],, [010]l[1TT],, [001]][211],
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A stereographic representation of the Bagaryatski orientation is presented in Fig. 7. Stere-
ograms are appealing because they provide a “picture” of the angular relationships between
poles (plane normals) of crystal planes and give some indication of symmetry; the picture is of
course distorted because distance on the stereogram does not scale directly with angle. Angu-
lar measurements on stereograms are in general made using Wulff nets and may typically be
in error by a few degrees, depending on the size of the stereogram. Space and aesthetic consid-
erations usually limit the number of poles plotted on stereograms, and those plotted usually
have rational indices. Separate plots are needed for cases where directions and plane normals
of the same indices have a different orientation in space. A co—ordinate transformation matrix
is a precise way of representing orientation relationships; angles between any plane normals or
directions can be calculated to any desired degree of accuracy and information on both plane
normals and directions can be derived from just one matrix. With a little nurturing it is also
possible to picture the meaning of the elements of a co—ordinate transformation matrix: each
column of (o J 6) represents the components of a basis vector of 6 in the basis a, and the
determinant of this matrix gives the ratio of volumes of the two unit cells.

Note that these parallelisms are consistent with the co—ordinate transformation matrix (« J 0)
as derived in example 4:

0.000000 1.024957  1.920485
(J )= —1.116120 —1.024957 0.960242
1.116120  —1.024957 0.0960242

Each column of (a J #) represents the components of a basis vector of § in the basis of a.
Relations between FCC and BCC crystals

The ratio of the lattice parameters of austenite and ferrite in steels is about 1.24, and there
are several other alloys (e.g. Cu—Zn brasses, Cu—Cr alloys) where FCC and BCC precipitates
of similar lattice parameter ratios coexist. The orientation relations between these phases
vary within a well defined range, but it is usually the case that a close-packed {1 1 1} -
plane is approximately parallel to a {0 1 1} 5~ plane (Fig. 8). Within these planes, there
can be a significant variation in orientation, with < 1 01 >pne || <111 >pqo for the
Kurdjumov-Sachs'® orientation relation, and < 1 0 1 >~ about 5.3° from < 111 >4
(towards < 111 >p.) for the Nishiyama—Wasserman relation'®. It is experimentally very
difficult to distinguish between these relations using ordinary electron diffraction or X-ray
techniques, but very accurate work, such as that of Crosky et al.'”, clearly shows a spread
of FCC-BCC orientation relationships (roughly near the Kurdjumov—Sachs and Nishiyama—
Wasserman orientations) within the same alloy. Example 5 deals with the exact Kurdjumov—
Sachs orientation relationship.

Example 5: The Kurdjumov-Sachs Orientation Relationship

Two plates of Widmanstétten ferrite (basis symbols X and Y respectively) growing in the
same grain of austenite (basis symbol ) are found to exhibit two different variants of the
Kurdjumov—Sachs orientation relationship with the austenite; the data below shows the sets
of parallel vectors of the three lattices:

L1, P11, Q1T Py
01, | MT1x (101, 0T,
131, 2T, 02T, 211y



Derive the matrices (X J ) and (Y J 7). Hence obtain the rotation matrix (X J Y) describing
the orientation relationship between the two Widmanstatten ferrite plates (the basis vectors
of X, Y and 7 define the respective conventional unit cells).

The information given relates to parallelisms between vectors in different lattices, and it is
necessary to equalise the magnitudes of parallel vectors in order to solve for the various co—
ordinate transformation matrices. Defining the constants k, g and m as

0.3 a2 Voo, a,
g = m =
aa\/i aa\/g \/éaa G

we obtain (as in equation 7c):

k=

Okky = (XJy[I11] 0 g 2m Jn J S\ (1T 1
Gg9x = (XJ’Y)[lgl]y or kg m | =|Jo Joy Jog L0 2
[2mmm]X = (X'J’y)[121]V kE g m J31 Jzg 33 I 11
0 g 2m 2/6 2/6 2/6 1 3g +2m 4m 39 +2m
XJy)=1|k g m 3/6 0 3/6|==|2k+39g—m 2k+2m 2k—3g-—m
kg m 1/6 2/6 1/6 2k —3g+m 2k—2m 2k+3g+m

so that

o [0.741582 —0.666667 —0.074915
(X J7)=—( 0.649830 0.741582 —0.166667
%\ 0.166667 0.074915  0.983163

In an similar way, we find

a 0.741582 —0.666667 0.074915
(Y J~v)=—10.166667 0.074915 —0.983163
%o\ 0.649830 0.741582  0.166667

To find the rotation matrix relating X and Y, we proceed as follows:
Xiu] = (X J )liu] and [Viu] = (Y J9)hsu] and [Xiw] = (X JY)[¥sul

it follows that
(X Iy = (X JY)[Y;u]

substituting for [Y;u], we get
(X I y)yiu] =X I Y)Y Iyl

so that
(XJY)=(XI)(IY)

carrying out this operation, we get the required X-Y orientation relation

0.988776 0.147308  —0.024972
(XJY)= 1] —0.024972 0.327722 0.944445
0.147308 —0.933219 0.327722
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Kurdjumov-Sachs Nishiyama-Wasserman
o1 || (111),, o1 |l (111),
(710}, (110}
[T111, [T1711,,
[011]Y [011]Y
[10_1]Y
(111 B <001>¢
¢ <011>4
o <001>Y

Fig. 8: (a) Stereographic representation of the Kurdjumov—Sachs orientation
relationship. Note that the positions of the base vectors of the 7y lattice are

consistent with the matrix (X J ) derived in example 5:

0.741582 —0.666667 —0.074915
(XJv)=—= 0649830 0.741582 —0.166667
%\ 0.166667 0.074915  0.983163

Each column of (X J 7) represents the components of a basis vector of 7y in
the basis X, so that [10 0], [0 1 0], and [0 0 1], are approximately parallel to
[110],, [T 10],, and [0 0 1], respectively, as seen in the stereographic represen-
tation. (b) Stereographic representation of the Nishiyama—Wasserman orienta-
tion relationship. Note that this can be generated from the Kurdjumov—Sachs
orientation by a rotation of 5.26° about [0 1 1] ,. The necessary rotation makes
112] ~ exactly parallel to [01 1], so that the Nishiyama—Wasserman orienta-
tion relation is also rational. In fact, the Nishiyama—Wasserman relation can be
seen to be exactly midway between the two variants of the Kurdjumov—Sachs
relation which share the same parallel close—packed plane. The stereograms
also show that the Kurdjumov-Sachs and Nishiyama-Wasserman orientation
relationships do not differ much from the 7/« orientation relationship implied

by the Bain strain illustrated in Fig. 1.

We see that the matrix (X J Y) is orthogonal because it represents an axis transformation
between like orthogonal bases. In fact, (X J ) and (Y J 7) each equal an orthogonal matrix
times a scalar factor a,, / a,; this is because the bases X, Y and v are themselves orthogonal.

In the above example, we chose to represent the Kurdjumov—Sachs orientation relationship by

18



a co—ordinate transformation matrix (X J 7). Named orientation relationships like this usually
assume the parallelism of particular low index planes and directions and in the example under
consideration, these parallelisms are independent of the lattice parameters of the FCC and
BCC structures concerned. In such cases, the orientation relationship may be represented by
a pure rotation matrix, relating the orthogonal, but not necessarily orthonormal, bases of the
two structures. Orientation relationships are indeed often specified in this way, or in some
equivalent manner such as an axis-angle pair or a set of three Euler angles. This provides
an economic way of representing orientation relations, but it should be emphasised that there
is a loss of information in doing this. For example, a co—ordinate transformation matrix like
(X J v) not only gives information about vectors which are parallel, but also gives a ratio of
the volumes of the two unit cells.

Orientation Relationships between Grains of Identical Structure

The relationship between two crystals which are of identical structure but which are misoriented
with respect to each other is described in terms of a rotation matrix representing the rigid body
rotation which can be imagined to generate one crystal from the other. As discussed below,
any rotation of this kind, which leaves the common origin of the two crystals fixed, can also
be described in terms of a rotation of 180° or less about an axis passing through that origin.

Example 6: Axis-Angle Pairs, and Rotation Matrices

Two ferrite grains X and Y can be related by a rotation matrix

1

1
(YIX)=- 9
3 2

N RO
=N DN

where the basis vectors of X and Y define the respective BCC unit cells. Show that the crystal
Y can be generated from X by a right-handed rotation of 60° about an axis parallel to the
[11 1]y direction.

A rigid body rotation leaves the magnitudes and relative positions of all vectors in that body
unchanged. For example, an initial vector u with components [u; u, u4]y relative to the X
basis, due to rotation becomes a new vector x, with the same components [u; u, ug)y, but
with respect to the rotated basis Y. The fact that x represents a different direction than u
(due to the rotation operation) means that its components in the X basis, [w; w, w4]y must
differ from [u; uy us]y. The components of x in either basis are obviously related by

[Y;x] = (Y J X)[X;x]
in other words,

[uy uy uz] = (Y J X)[w; wy wy] (8a)

However, if u happens to lie along the axis of rotation relating X and Y, then not only will
[X;u] = [Y;x] as before, but its direction also remains invariant to the rotation operation, so
that [X;x] = [Y;x]. From equation 8a,

(Y J X)[X;x] = [Y; %]

so that
(Y J X)[X;u] = [X;u
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and hence
(Y IX) ~}[X;u] = 0 (b)

where I is a 3 x 3 identity matrix. Any rotation axis must satisfy an equation of this form;
expanding equation 8b, we get

1 2 1

—2uy + 2uy, — 3u 0
1 1 2

—2uy — Uy + 2u 0
2 1 1
U] — 3Uy —3ug3 =10

Solving these simultaneously gives u; = u, = u4, proving that the required rotation axis lies
along the [1 1 1] direction, which is of course, also the [1 1 1], direction.

The angle, and sense of rotation can be determined by examining a vector v which lies at 90°
to u. If, say, v = [1 0 1] , then as a result of the rotation operation it becomes z = [1 0 1], =
[0 T 1]y, making an angle of 60° with v, giving the required angle of rotation. Since v A z
gives [1 1 1], it is also a rotation in the right—handed sense.

Comments

(i) The problem illustrates the fact that the orientation relation between two grains
can be represented by a matrix such as (Y J X), or by an axis—angle pair such as
[1 1 1]y and 60°. Obviously, the often used practice of stating a misorientation
between grains in terms of just an angle of rotation is inadequate and incorrect.

(ii) If we always represent an axis of rotation as a unit vector (or in general, a vector
of fixed magnitude), then only three independent quantities are needed to define a
misorientation between grains: two components of the axis of rotation, and an angle
of rotation. It follows that a rotation matrix must also have only three independent
terms. In fact, the components of any rotation matrix can be written in terms of a
vector u = [u; uy us] which lies along the axis of rotation (such that w,u; + uyu, +
ugus = 1), and in terms of the right-handed angle of rotation 6 as follows:

wu (—m)+m  uuy(l—m)+ugn ujus(l—m) —uyn
(Y JIX)= [ ujug(l —m) —ugn  uqus(l —m)+m  uyug(l —m)+un (8¢)
U ug(l —m) +usn  ugug(l —m) —ugn  uguz(l —m) +m

where m = cosf and n = sinf The right-handed angle of rotation can be obtained from the
fact that
J11+J22+J33: 1+2COSH (Sd)

and the components of the vector u along the axis of rotation are given by

u; = (Jy3 — J35)/2siné
Uy = (J33 —Jy3)/2siné (8e)
ug = (Jig—Jy)/2sinf

From the definition of a co-ordinate transformation matrix, each column of (Y J X) gives the
components of a basis vector of X in the basis Y. It follows that

[100]xll[2T2]y [010]x[l[221]y 01kl [T22]y
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Suppose now that there exists another ferrite crystal (basis symbol Z), such that

[0T0]4 [2T2]y [100]4 [221])y 00 1] [T22]y
1 (2 2 1
(Yiz)=5|2 1 2
12 2

with the crystal Y being generated from Z by a right-handed rotation of 70.52° about [1 0 1],
direction. It can easily be demonstrated that

(Z JX) = from  (ZJX)=(ZJ Y)Y JX)

O = O
OO =
_— o O

so that crystal X can be generated from Z by a rotation of 90° about [0 0 1] axis. However,
this is clearly a symmetry operation of a cubic crystal, and it follows that crystal X can never
be experimentally distinguished from crystal Z, so that the matrices (Y J X) and (Y J Z) are
crystallographically equivalent, as are the corresponding axis—angle pair descriptions. In other
words, Y can be generated from X either by a rotation of 60° about [1 1 1], or by a rotation
of 70.52° about [1 0 1]y. The two axis—angle pair representations are equivalent. There are
actually 24 matrices like (Z J X) which represent symmetry rotations in cubic systems. It
follows that a cubic bicrystal can be represented in 24 equivalent ways, with 24 axis—angle
pairs. Any rotation matrix like (Y J X) when multiplied by rotation matrices representing
symmetry operations (e.g. (Z J X)) will lead to the 24 axis—angle pair representations. The
degeneracy of other structures is as follows'8: Cubic (24), Hexagonal (12), Hexagonal close-
packed (6), Tetragonal (8), Trigonal (6), Orthorhombic (4), Monoclinic (2) and Triclinic (1).
In general, the number N of axis—angle pairs is given by

N =1+ N, + 2N, + 3N, + 5N

where N,, N3, N, and Ng refer to the number of diads, triads, tetrads and hexads in the
symmetry elements of the structure concerned.

Fig. 9 is an electron diffraction pattern taken from an internally twinned martensite plate in a
Fe-4Ni-0.4C wt% steel. It contains two < 0 1 1 > BCC zones, one from the parent plate (m)
and the other from the twin (t). The pattern clearly illustrates how symmetry makes it possible
to represent the same bi-crystal in terms of more than one axis—angle pair. This particular
pattern shows that the twin crystal can be generated from the parent in at least three different
ways: (i) Rotation of 70.52° about the < 0 1 1 > zone axes of the patterns, (ii) Rotation
of 180° about the {1 1 1} plane normal, and (iii) Rotation of 180° about the {2 1 1} plane
normal. It is apparent that these three operations would lead the same orientation relation
between the twin and the parent lattices.

Example 7: “Double” Twinning

Plates of BCC martensite in Fe-30.4Ni wt% contain {1 1 2} transformation twins, the two twin
orientations X and Y being related by a rotation of 60° about a < 1 1 1 > axis. Deformation
of this martensite at low temperatures leads to the formation of twins on {5 8 11} planes,
the direction of the twinning shear being < 5 1 3 >. This is a very rare mode of twinning
deformation in BCC systems; show that its occurrence may be related to the fact that such
twins can propagate without any deviation, across the already existing transformation twins
in the martensite!?:20.
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Fig. 9; Electron diffraction pattern from a martensite plate (m) and its twin

(t). Spots not connected by lines (e.g. “dd”) arise from double diffraction.

The orientation relationship between the transformation twins is clearly the same as the matrix
(Y J X) of Example 6. Using this matrix and equations 2a,7e we obtain:

BT3lll <531,

(58 11) x| {5 11 8}y

It follows that {5 8 11} deformation twins can propagate without deviation across the trans-
formation twins, since the above planes and directions, respectively, are crystallographically
equivalent and indeed parallel. This may explain the occurrence of such an unusual deformation
twinning mode.

The Metric

For cubic crystals, it is a familiar result that if the indices [u; uy ug] of a direction u in the
lattice are numerically identical to the Miller indices (h, hy hg) of a plane in the lattice, then
the normal to this plane (h) is parallel to the direction mentioned. In other words, u| h,
and since [A;u] = [u; u,y ug] and (h; A*) = (hy hy hy), we have [u; uy ug] = [hy hy hg]. (‘A7
represents the basis of the cubic system concerned, and ‘A*’ the corresponding reciprocal basis,
in the usual way).

However, this is a special case reflecting the high symmetry of cubic systems, and it is not
generally true that if u, = h,, then ul|| h. For example, the [1 2 3] direction in cementite is not
parallel to the (1 2 3) plane normal.
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Consider any arbitrary crystal system, defined by a basis A (basis vectors a,), and by the
corresponding reciprocal basis A* consisting of the basis vectors a; (obtained as in equation 3a).
To find the angle between the direction u and the plane normal h, it would be useful to have
a matrix (A* G A), which allows the transformation of the components of a vector referred to
the basis A, to those referred to its reciprocal basis A*. (The symbol G is used, rather than J,
to follow convention). This matrix, called the metric, with components Gij can be determined
in exactly the same manner as any other co—ordinate transformation matrix. Each column of
(A* G A) thus consists of the components of one of the basis vectors of A, when referred to
the basis A*. For example,

a; = Gpa) + Gyia; + Gy (9a)

Taking successive scalar dot products with a;, a, and a5 respectively on both sides of equa-
tion 9a, we get
Gy =ag.ag, Gy = ay.ay Gs = a,.a4

since a;.a; = 0 when i # j (equation 4b). The rest of the elements of (A* G A) can be
determined in a similar way, so that

a,.a; a,a; aga,
* j—
(A*GA)= | a;.a, aja, aja, (9b)
a,.a; a,.a; a;.a;

It is easily demonstrated that the determinant of (A* G A) equals the square of the volume

of the cell formed by the basis vectors of A. We note also that for orthonormal co—ordinates,
(Z* G Z) =L

Example 8: Plane normals and directions in an orthorhombic structure

A crystal with an orthorhombic structure has lattice parameters a, b and c. If the edges of the
orthorhombic unit cell are taken to define the basis 6, determine the metric (* G 6). Hence
derive the equation giving the angle ¢ between a plane normal (h;6*) = (hy hy, hy) and any
direction [0;u] = [uy uy ug).

From the definition of a scalar dot product, h.u/|h||u| = cos ¢. Now,

a> 0 0 a? 0 0
@*GcoH=(0 v 0 @Goey=[ 0o b2 0
0 0 ¢ 0 0 c¢2

From equation 4,
|h|> = h.h = (h; 0*)[; h]

= (h;6%)(0 G 6)[6"; h]
= hi/a* + h3/b* + h3/c?

Similarly,
lul?> = uu = (u;0)[0*; u]
= (w;0)(6" G 0)[0; u]
= uya® + uyb® + uzc?
Since

h.u = (h;0%)[0;u] = hyu; + hyuy + hgug

it follows that
(hyuy + hyuy + haus)

V(B3] a® + h3 /b7 + h3/c?)(uya? + ugh? + uic?)

cos ¢ =
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More about the Vector Cross Product

Suppose that the basis vectors a, b and ¢ of the basis 6 define an orthorhombic unit cell, then
the cross product between two arbitrary vectors u and v referred to this basis may be written:

uAv = (u;a+ uyb+uzc) A (v,a+ vyb + vsc)
where [0;u] = [u; uy us] and [0; v] = [v; vy vs]. This equation can be expanded to give:
U AV = (uyv5 — uzvy) (b A c) + (ugv; — uqv5)(c Aa) + (uvy — uyvy)(aAb)

Since a.bAc = V, the volume of the orthorhombic unit cell, and since bAc = Va* (equation 3a),
it follows that

uAv =V|(uyv3 — ugvy)a® + (uzv; — ugv3)b™ + (uyvy — uyvy )c” (10a)

Hence, u A v gives a vector whose components are expressed in the reciprocal basis. Writing
X = uAv, with (x;6*) = (w; w, wy), it follows that w, = V(uyvs —usv,), wy = V(ugv; —uqv5)
and wy = V (uyvy —uyv,). The cross product of two directions thus gives a normal to the plane
containing the two directions. If necessary, the components of x in the basis 6 can easily be
obtained using the metric, since [#;x] = (f G 0*)[6*;x]. Similarly, the cross product of two
vectors h and k which are referred to the reciprocal basis 6*, such that (h;0*) = (h; hy hy)
and (k;0*) = (ky ky k), can be shown to be:

1
h Ak = | (hoks = hshy)a+ (hgky — hykg)b — (hoky — hyky)e (10b)

Hence, h Ak gives a vector whose components are expressed in the real basis. The vector cross
product of two plane normals gives a direction (zone axis) which is common to the two planes
represented by the plane normals.

Worked Examples in the Geometry of Crystals by H. K. D. H. Bhadeshia, 2nd edition, 2001.
ISBN 0-904357-94-5. First edition published in 1987 by the Institute of Metals, 1 Carlton
House Terrace, London SW1Y 5DB.
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3 Invariant—Plane Strains

The deformation of crystals by the conservative glide of dislocations on a single set of crystallo-
graphic planes causes shear in the direction of the resultant Burgers vector of the dislocations
concerned, a direction which lies in the slip plane; the slip plane and slip direction constitute
a slip system. The material in the slip plane remains crystalline during slip and since there is
no reconstruction of this material during slip (e.g. by localised melting followed by resolidifi-
cation), there can be no change in the relative positions of atoms in the slip plane; the atomic
arrangement on the slip plane is thus completely unaffected by the deformation. Another
mode of conservative plastic deformation is mechanical twinning, in which the parent lattice is
homogeneously sheared into the twin orientation; the plane on which the twinning shear occurs
is again unaffected by the deformation and can therefore form a coherent boundary between
the parent and product crystals. If a material which has a Poisson’s ratio equal to zero is
uniaxially stressed below its elastic limit, then the plane that is normal to the stress axis is
unaffected by the deformation since the only non-zero strain is that parallel to the stress axis
(beryllium has a Poisson’s ratio which is nearly zero).

All these strains belong to a class of deformations called invariant—plane strains. The operation
of an invariant—plane strain (IPS) always leaves one plane of the parent crystal completely
undistorted and unrotated; this plane is the invariant plane. The condition for a strain to
leave a plane undistorted is, as illustrated in example 3, that the principal deformations of its
pure strain component, n,, 7, and 75 are greater than, equal to and less than unity, respectively.
However, as seen in Figs. 6a,b, this does not ensure that the undistorted plane is also unrotated;
combination with a suitable rotation (Fig. 6¢) produces the true invariant plane. Before using
the concept of an IPS to understand deformation and transformation theory, we develop a way
of expressing invariant-plane strains which will considerably simplify the task?.

In chapter 1, it was demonstrated that a homogeneous deformation (A S A) strains a vector
u into another vector v which in general may have a different direction and magnitude:

[Aiv] = (A'S A)[Asul (11a)

However, the deformation could also have been defined with respect to another arbitrary basis,
such as ‘B’ (basis vectors b,) to give the deformation matrix (B S B), with:

B;v] = (B S B)[B;ul. (11b)

Worked Examples in the Geometry of Crystals by H. K. D. H. Bhadeshia, 2nd edition, 2001.
ISBN 0-904357-94-5. First edition published in 1987 by the Institute of Metals, 1 Carlton
House Terrace, London SW1Y 5DB.
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INVARIANT-PLANE STRAINS

The physical effect of (B S B) on the vector u must of course be exactly the same as that
of (A'S A) on u, and the initial and final vectors u and v remain unaffected by the change
of basis (although their components change). If the co—ordinate transformation relating the
bases A and B is given by (A J B), then:

[A;u] = (A J B)[B;u] and [A;v] = (A J B)[B;v].
Substituting these relations into equation 11a, we get
(AJB)B;v]=(ASA)(A JB)[B;u]

or

[B;v] = (B J A)(A S A)(A J B)[B;u]

Comparison with equation 11b proves that
(BSB)=(BJA)(ASA)AJB) (11c)

An equation like equation 11c represents a Similarity Transformation, changing the basis with
respect to which the deformation is described, without altering the physical nature of the
deformation.

We can now proceed to examine the nature of invariant—plane strains. Fig. 10 illustrates three
such strains, defined with respect to a right-handed orthonormal basis Z, such that z, is parallel
to the unit normal p of the invariant plane; z; and z, lie within the invariant plane, z, being
parallel to the shear component of the strain concerned. Fig. 10a illustrates an invariant—plane
strain which is purely dilatational, and is of the type to be expected when a plate-shaped
precipitate grows diffusionally. The change of shape (as illustrated in Fig. 10a) due to the
growth of this precipitate then reflects the volume change accompanying transformation.

In Fig. 10b, the invariant—plane strain corresponds to a simple shear, involving no change of
volume, as in the homogeneous deformation of crystals by slip. The shape of the parent crystal
alters in a way which reflects the shear character of the deformation.

(@) (b) (€)

o — m
A } A
Z3 P
zI i >
uniaxial simple general
extension shear IPS
(ZP12) (ZP22) (ZP3 2)

Fig. 10: Three kinds of invariant—plane strains. The squares indicate the
shape before deformation. §, s and m represent the magnitudes of the dilata-
tional strain, shear strain and general displacement respectively. p is a unit

vector, the shear strain s is parallel to z;, whereas 0 is parallel to z;.
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The most general invariant—plane strain (Fig. 10c) involves both a volume change and a shear;
if d is a unit vector in the direction of the displacements involved, then md represents the
displacement vector, where m is a scalar giving the magnitude of the displacements. md may
be factorised as md = sz; + 6z5, where s and ¢ are the shear and dilatational components,
respectively, of the invariant-plane strain. The strain illustrated in Fig. 10c is of the type
associated with the martensitic transformation of  iron into HCP iron. This involves a shear
onthe {111} planesin <11 2 >, direction, the magnitude of the shear being 8~ 2. However,
there is also a dilatational component to the strain, since HCP iron is more dense than FCC
iron (consistent with the fact that HCP iron is the stable form at high pressures); there is
therefore a volume contraction on martensitic transformation, an additional displacement 6
normal to the {1 1 1} austenite planes.

It has often been suggested that the passage of a single Shockley partial dislocation on a close-
packed plane of austenite leads to the formation of a 3-layer thick region of HCP, since this
region contains the correct stacking sequence of close-packed planes for the HCP lattice. Until
recently it has not been possible to prove this, because such a small region of HCP material gives
very diffuse and unconvincing HCP reflections in electron diffraction experiments. However,
the 6 component of the FCC-HCP martensite transformation strain has now been detected?!
to be present for single stacking faults, proving the HCP model of such faults.

Turning now to the description of the strains illustrated in Fig. 10, we follow the procedure of
Chapter 1, to find the matrices (Z P Z); the symbol P in the matrix representation is used to
identify specifically, an invariant—plane strain, the symbol S being the representation of any
general deformation. Each column of such a matrix represents the components of a new vector
generated by deformation of a vector equal to one of the basis vectors of Z. It follows that the
three matrices representing the deformations of Fig. 10a-c are, respectively,

10 0 10 s 10 s
ZP1Z)=|0 1 0 (ZP2Z)=(0 1 0 (ZP3Z)=(0 1 0
00 146 00 1 00 146

These matrices have a particularly simple form, because the basis Z has been chosen carefully,
such that p|| z; and the direction of the shear is parallel to z,. However, it is often necessary
to represent invariant—plane strains in a crystallographic basis, or in some other basis X. This
can be achieved with the similarity transformation law, equation 1lc. If (X J Z) represents
the co-ordinate transformation from the basis Z to X, we have

(XPX)=(XJZ)(ZPZ)(ZJIX)

Expansion of this equation gives??

14+ md,p, md;py md,ps
(XPX)= mdyp, 1+ mdyp, mdypy (11d)
mdsp; mdsps 14+ mdsp,

where d; are the components of d in the X basis, such that (d; X*)[X;d] = 1. The vector d
points in the direction of the displacements involved; a vector which is parallel to d remains
parallel following deformation, although the ratio of its final to initial length may be changed.
The quantities p; are the components of the invariant-plane normal p, referred to the X* basis,
normalised to satisfy (p; X*)[X;p] = 1. Equation 11d may be simplified as follows:

(X P X) =I+m[X;d](p;X"). (11e)
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INVARIANT-PLANE STRAINS

The multiplication of a single-column matrix with a single-row matrix gives a 3 X 3 matrix,
whereas the reverse order of multiplication gives a scalar quantity. The matrix (X P X) can
be used to study the way in which vectors representing directions (referred to the X basis)
deform. In order to examine the way in which vectors which are plane normals (i.e. referred
to the reciprocal basis X*) deform, we proceed in the following manner.

The property of a homogeneous deformation is that points which are originally collinear re-
main collinear after the deformation®. Also, lines which are initially coplanar remain coplanar
following deformation. It follows that an initial direction u which lies in a plane whose normal
is initially h, becomes a new vector v within a plane whose normal is k, where v and k result
from the deformation of u and h, respectively. Now, h.u = k.v = 0, so that:

(h; X*)[X5u] = (k; X7)[X; v] = (k; X*)(X P X)[X; u
1.€.
(k; X*) = (hs X*)(X P X)~! (12)
Equation 12 describes the way in which plane normals are affected by the deformation (X P X).
From equation 1le, it can be shown that
(X PX)™" =T—mg[X; d](p;X*) (13)

where 1/q = det(X P X) = 1 4+ m(p;X*)[d; X]. The inverse of (X P X) is thus another
invariant—plane strain in the opposite direction.

Example 11: Tensile tests on single—crystals

A thin cylindrical single-crystal specimen of « iron is tensile tested at —140°C, the tensile
axis being along the [4 4 1] direction (the cylinder axis). On application of a tensile stress,
the entire specimen deforms by twinning on the (1 1 2) plane and in the [1 1 1] direction,
the magnitude of the twinning shear being 273, (Calculate the plastic strain recorded along
the tensile axis, assuming that the ends of the specimen are always maintained in perfect
alignment. (Refs. 23-26 contain details on single crystal deformation).

Fig. 11: Longitudinal section of the tensile specimen illustrating the (1 1 0)

plane. All directions refer to the parent crystal basis. The tensile axis rotates
towards d, in the plane containing the original direction of the tensile axis (u)
and d.
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Fig. 11a illustrates the deformation involved; the parent crystal basis « consists of basis vectors
which form the conventional BCC unit cell of a-iron. The effect of the mechanical twinning is
to alter the original shape abed to a’'b'c’d’. ef is a trace of (1 1 2),, on which the twinning shear
occurs in the [1 1 1], direction. However, as in most ordinary tensile tests, the ends of the
specimen are constrained to be vertically aligned at all times; a’d’ must therefore be vertical
and the deforming crystal must rotate to comply with this requirement. The configuration
illustrated in Fig. 1lc is thus obtained, with ad and a/d’ parallel, the tensile strain being
(a’d" — ad)/(ad).

As discussed earlier, mechanical twinning is an invariant—plane strain; it involves a homoge-
neous simple shear on the twinning plane, a plane which is not affected by the deformation and
which is common to both the parent and twin regions. Equation 11d can be used to find the
matrix (o P «) describing the mechanical twinning, given that the normal to the invariant—
plane is (p;a*) = a,672(1 1 2), the displacement direction is [o;d] = a7'372[1 1 1] and
m = 272. It should be noted that p and d respectively satisfy the conditions (p;a™)[a;p] =1
and (d; a*)[o;d] = 1, as required for equation 11d. Hence

1 71 2
(a P a)= 6 1 7 2
11 4
Using this, we see that an initial vector [a;u] = [4 4 1] becomes a new vector [a;Vv] =

(o P @)[o; u] = £[34 34 4] due to the deformation. The need to maintain the specimen ends in
alignment means that v is rotated to be parallel to the tensile axis. Now, |u| = 5.745a,, where
a,, is the lattice parameter of the ferrite, and |v| = 8.042a,,, giving the required tensile strain
as (8.042 — 5.745)/5.745 = 0.40.

Comments

(i) From Fig. 11 it is evident that the end faces of the specimen will also undergo defor-
mation (ab to a”b”) and if the specimen gripping mechanism imposes constraints on
these ends, then the rod will tend to bend into the form of an ‘S’. For thin specimens
this effect may be small.

(ii) The tensile axis at the beginning of the experiment was [4 4 1], but at the end
is §[34 34 4]. The tensile direction has clearly rotated during the course of the
experiment. The direction in which it has moved is §[34 34 4] —[4 4 1] = }[10 10 10],
parallel to [1 1 1], the shear direction d. In fact, any initial vector u will be displaced
towards d to give a new vector v as a consequence of the IPS. Using equation 1le,
we see that

[a; v] = (a P a)[a;u] = [a;u] + m[e; d](p; @) [ u] = [a;u] + Bla; d]

where 3 is a scalar quantity § = m(p; a*)[a; ul.

Clearly, v = u + d, with g = 0 if u lies in the invariant—plane. All points in the
lattice are thus displaced in the direction d, although the extent of displacement
depends on .

(iii) Suppose now that only a volume fraction V of the specimen underwent the twinning
deformation, the remainder being unaffected by the applied stress. The tensile strain
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recorded over the whole specimen as the gauge length would simply be 0.40 V', which
is obtained?* by replacing m in equation 11d by Vm.

(iv) If the shear strain is allowed to vary, as in normal slip deformation, then the position
of the tensile axis is still given by v = u + 8d, with 8 and v both varying as the
test progresses. Since v is a linear combination of u and Ad, it must always lie in
the plane containing both u and d. Hence, the tensile axis rotates in the direction
d within the plane defined by the original tensile axis and the shear direction, as
illustrated in Fig. 11c.

Considering further the deformation of single—crystals, an applied stress ¢ can be resolved into
a shear stress 7 acting on a slip system. The relationship between o and 7 can be shown?3~2°
to be 7 = o cos ¢ cosA, where ¢ is the angle between the slip plane normal and the tensile axis,
and A is the angle between the slip direction and the tensile axis. Glide will first occur in the
particular slip system for which 7 exceeds the critical resolved shear stress necessary to initiate
dislocation motion on that system. In austenite, glide is easiest on {1 11} <01 1 > and the
~ standard projection (Fig. 12a) can be used®® to determine the particular slip system which
has the maximum resolved shear stress due to a tensile stress applied along u. For example, if
u falls within the stereographic triangle labelled A2, then (1 1 1)[0 1 1] can be shown to be the
most highly stressed system. Hence, when 7 reaches a critical value (the critical resolved shear
stress), this system alone operates, giving “easy glide” since there is very little work hardening
at this stage of deformation; the dislocations which accomplish the shear can simply glide out
of the crystal and there is no interference with this glide since none of the other slip systems are
active. Of course, the tensile axis is continually rotating towards d and may eventually fall on
the boundary between two adjacent triangles in Fig. 12a. If u falls on the boundary between
triangles A2 and D4, then the slip systems (1 1 1)[0 1 1] and (1 1 1)[1 0 1] are both equally
stressed. This means that both systems can simultaneously operate and duplez slip is said to
occur; the work hardening rate drastically increases as dislocations moving on different planes
interfere with each other in a way which hinders glide and increases the defect density. It
follows that a crystal which is initially orientated for single slip eventually deforms by multiple
slip.

Example 12: The Transition from Easy Glide to Duplex Slip

A single-crystal of austenite is tensile tested at 25°C, the stress being applied along [2 1 3]
direction; the specimen deforms by easy glide on the (1 1 1)[0 1 1] system. If slip can only
occur on systems of this form, calculate the tensile strain necessary for the onset of duplex
slip. Assume that the ends of the specimen are maintained in alignment throughout the test.

The tensile axis (v) is expected to rotate towards the slip direction, its motion being confined
to the plane containing the initial tensile axis (u) and the slip direction (d). In Fig. 12b, v
will therefore move on the trace of the (1 1 1) plane. Duplex slip is expected to begin when
v reaches the great circle which separates the stereographic triangles A2 and D4 of Fig. 12b,
since the (1 1 1)[1 0 1] slip system will have a resolved shear stress equal to that on the initial
slip system. The tensile axis can be expressed as a function of the shear strain m as in example
11:

[v; v] = [v;u] +mly;d](p; ") [v; ]
where (p;7*) = %(T 11) and [y;d] = \/51% [0 1 1], so that

f; v] =h;u1+47”g[011] — P13+ 2T



trace of (111)

Fig. 12: Stereographic analysis of slip in FCC single—crystals.

When duplex slip occurs, v must lie along the intersection of the (1 1 1) and (1 1 0) planes,
the former being the plane on which v is confined to move and the latter being the boundary
between triangles A2 and D4. It follows that v|| [1 1 2] and must be of the form v = [v v 2v].
Substituting this into the earlier equation gives

[vv2@]:[§i3}+47n;[0T1]

and on comparing coefficients from both sides of this equation, we obtain
[vivl=1[224]
so that the tensile strain required is (|v| — |u|)/|u| = 0.31.

Deformation Twins
We can now proceed to study twinning deformations*2%27 in greater depth, noting that a
twin is said to be any region of a parent which has undergone a homogeneous shear to give a
re—orientated region with the same crystal structure. The example below illustrates some of
the important concepts of twinning deformation.

Example 13: Twins in FCC crystals

Show that the austenite lattice can be twinned by a shear deformation on the {1 1 1} plane
and in the < 1 1 2 > direction. Deduce the magnitude of the twinning shear, and explain why
this is the most common twinning mode in FCC crystals. Derive the matrix representing the
orientation relationship between the twin and parent lattices.

{111} planes in FCC crystals are close-packed, with a stacking sequence ... ABCABCABC'...
The region of the parent which becomes re-orientated due to the twinning shear can be gener-
ated by reflection across the twinning plane; the stacking sequence across the plane B which is
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+7 —————x

B 1
C €
e A2
3 |
I+ g F

shape ACBO sheared to
ACBO. 1,=shear direction.
Ki = invariant-plane normal

(b)

Fig. 13: Twinning in the FCC austenite lattice. The diagrams represent
sections in the (1 1 0) plane. In Fig. 13b, K} and 7}, are the final positions of
the undistorted plane K, and the undistorted direction 7),, respectively.

the coherent twin interface is therefore ... ABCABACBA... Fig. 13a illustrates how a stack
of close-packed planes (stacking sequence ... ABC'...) may be labelled ... — 1,0,+1... Re-
flection across 0 can be achieved by shearing atoms in the +1 plane into positions which are
directly above (i.e. along < 1 1 1 >) the atoms in the —1 plane.

Fig. 13a is a section of the lattice on the (I 1 0) plane; it is evident that a displacement of
all the atoms on +1 through a distance v = |v| along < 1 1 2 > gives the required reflection
across the twinning plane 0. The twinning shear s is given by the equation s = (v/d)?, where
d is the spacing of the (1 1 1) planes. Since v? = u? — 4d?, we may write

s2 = (u/d)* — 4 (14)

where u = |u| and u connects a site on the +1 plane to an equivalent site on the —1 plane
(Fig. 13a). Hence, the FCC lattice can be twinned by a shear of magnitude s = 1/v/2 on
{111}.

To answer why a crystal twins in a particular way, it is necessary to make the physically
reasonable assumption that the twinning mode should lead to the smallest possible shear (s).
When the twin is forced to form in a constrained environment (as within a polycrystalline
material), the shape change resulting from the shear deformation causes elastic distortions in
both the twin and the matrix. The consequent strain energy increase (per unit volume of
material) is approximately given by?®=3° E = (¢/r)us?, where c and r represent the thickness
and length of the twin respectively, and p is the shear modulus. This is also the reason why
mechanical twins have a lenticular morphology, since the small thickness to length ratio of thin-
plates minimises F. Annealing twins, grow diffusionally and there is no physical deformation
involved in their growth. Hence, their shape is not restricted to that of a thin plate, the
morphology being governed by the need to minimise interface energy. It is interesting that
annealing and mechanical twins are crystallographically equivalent (if we ignore the absence
of a shape change in the former) but their mechanisms of growth are very different.
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Equation 14 indicates that s can be minimised by choosing twinning planes with large d—
spacings and by choosing the smallest vector u connecting a site on the +1 plane to an equiv-
alent site on the —1 plane; for the (1 1 1) plane the smallest u is %[1 1 2], as illustrated in
Fig. 13a. Equation 14 can also be used to show that none of the planes of slightly smaller
spacing than {1 1 1} can lead to twins with s < 2_%; two of these planes are also mirror planes
and thus cannot serve as the invariant—plane (K, Fig. 13b) of the reflection twin.

From Fig. 13a we see that the twin lattice could also have been obtained by displacing the
atoms in the +1 plane through a distance 2v along [1 1 2] had u been chosen to equal [v/2 v/2 0],
giving s = v/2. This larger shear is of course inconsistent with the hypothesis that the favoured
twinning mode involves the smallest shear, and indeed, this mode of twinning is not observed.
To obtain the smallest shear, the magnitude of the vector v must also be minimised; in the
example under consideration, the correct choice of v will connect a lattice site of plane +1
with the projection of its nearest neighbour lattice site on plane —1. The twinning direction
is therefore expected to be along [1 1 2]. It follows that the operative twin mode for the FCC
lattice should involve a shear of magnitude s =272 on {111} <112 >,

The matrix-twin orientation relationship (M J T) can be deduced from the fact that the twin
was generated by a shear which brought atoms in the twin into positions which are related to
the parent lattice points by reflection across the twinning plane (the basis vectors of M and T
define the FCC unit cells of the matrix and twin crystals respectively). From Fig. 13 we note
that:

11200 112, 11 0], [T1 0], 11 1] 1T T,
It follows that B o
111 Jy T Jis\ (1 T T
11 1| =y Jp Jou | |1 11
2 0 1 Ja1 3o Jgg 2 01
Solving for (M J T), we get
1 1 1 1 11 2 1 1 2 2
MIT)=c|1 1 1](330)=5(212
2 0 1 2 2 2 2 21

Comments

(i) Equations like equation 14 can be used* to predict the likely ways in which different
lattices might twin, especially when the determining factor is the magnitude of the
twinning shear.

(ii) There are actually four different ways of generating the twin lattice from the parent
crystal: (a) by reflection about the K, plane on which the twinning shear occurs,
(b) by a rotation of 7w about 7, the direction of the twinning shear, (c) by reflection
about the plane normal to n; and (d) by a rotation of m about the normal to the
K, plane.

Since most metals are centrosymmetric, operations (a) and (d) produce crystallographically
equivalent results, as do (b) and (c). In the case of the FCC twin discussed above, the high
symmetry of the cubic lattice means that all four operations are crystallographically equivalent.
Twins which can be produced by the operations (a) and (d) are called type I twins; type
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II twins result form the other two twinning operations. The twin discussed in the above
example is called a compound twin, since type I and type II twins cannot be crystallographically
distinguished. Fig. 13b illustrates some additional features of twinning. The K, plane is the
plane which (like K) is undistorted by the twinning shear, but unlike K, is rotated by
the shear. The “plane of shear” is the plane containing n; and the perpendicular to K; its
intersection with K, defines the undistorted but rotated direction 7,. In general, 7, and K, are
rational for type I twins, and 7, and K, are rational for type II twins. The set of four twinning
elements K, K,, n; and 7, are all rational for compound twins. From Fig. 13b, n, makes an
angle of arctan(s/2) with the normal to K, and simple geometry shows that n, = [1 1 2] for
the FCC twin of example 13. The corresponding K, plane which contains 1, and 7, A 7, is
therefore (1 1 1), giving the rational set of twinning elements

K,=(111) n,=[112 s=2"7 g5 =[112 K,=(1171)

In fact, it is only necessary to specify either K, and 7, or K, and 7, to completely describe
the twin mode concerned.

The deformation matrix (M P M) describing the twinning shear can be deduced using equa-
tion 11d and the information [M;d]| [1 1 2], (p; M*)|| (11 1) and s = 272 to give

1 1 e 11
(MP M) = 1 and (MPM)_lzg 15 1 (15a)
4 2 2 8

N —
N 3 —

and if a vector u is deformed into a new vector v by the twinning shear, then
(M P M)[M;u] = [M;v] (15b)
and if h is a plane normal which after deformation becomes k, then
(h; M*)(M P M)~ = (k; M) (15¢)

These laws can be used to verify that p and d are unaffected by the twinning shear, and that
the magnitude of a vector originally along 7, is not changed by the deformation; similarly, the
spacing of the planes initially parallel to K, remains the same after deformation, although the
planes are rotated.

The Concept of a Correspondence Matrix

The property of the homogeneous deformations we have been considering is that points which
are initially collinear remain so in spite of the deformation, and lines which are initially coplanar
remain coplanar after the strain. Using the data of example 13, it can easily be verified that
the deformation (M P M) alters the vector [M;u] = [0 0 1]to a new vector [M;v] = £[1 1 4]i.e.

(M P M)[00 1], = %[1 14],, (15d)

The indices of this new vector v relative to the twin basis T can be obtained using the co—
ordinate transformation matrix (T J M), so that

(TIM)-[114],, =[T;v]==[I10], (15¢)

| =
N | —
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Hence, the effect of the shear stress is to deform a vector [0 0 1],, of the parent lattice into a
vector $[1 1 0], of the twin. Equations 15d and 15e could have been combined to obtain this
result, as follows:

(T J M)(M P M)[M;u] = [T; V] (15t)
(T C M)[M;u] = [T; V] (15g)

where
(TIM)(MP M) = (T CM) (15h)

The matrix (T C M) is called the correspondence matrix; the initial vector u in the parent
basis, due to deformation becomes a corresponding vector v with indices [T;v] in the twin
basis. The correspondence matrix tells us that a certain vector in the twin is formed by
deforming a particular corresponding vector of the parent. In the example considered above,
the vector u has rational components in M (i.e. the components are small integers or fractions)
and v has rational components in T. It follows that the elements of the correspondence matrix
(T C M) must also be rational numbers or fractions. The correspondence matrix can usually
be written from inspection since its columns are rational lattice vectors referred to the second
basis produced by the deformation from the basis vectors of the first basis.

We can similarly relate planes in the twin to planes in the parent, the correspondence matrix
being given by
(MCT)=MPM) " (MJT) (151)

where

(M )M CT) = (k;T7)

so that the plane (k; T*) of the twin was formed by the deformation of the plane (h; M*) of
the parent.

Stepped Interfaces

A planar coherent twin boundary (unit normal p) can be generated from a single crystal by
shearing on the twinning plane p, the unit shear direction and shear magnitude being d and
m respectively.

On the other hand, to generate a similar boundary but containing a step of height h requires
additional virtual operations (Fig. 14)2427:31, The single crystal is first slit along a plane which
is not parallel to p (Fig. 14b), before applying the twinning shear. The shear which generates
the twinned orientation also opens up the slit (Fig. 14c), which then has to be rewelded
(Fig. 14d) along the original cut; this produces the required stepped interface. A Burgers
circuit constructed around the stepped interface will, when compared with an equivalent circuit
constructed around the unstepped interface exhibit a closure failure. This closure failure gives
the Burgers vector b, associated with the step:

b, = hmd (16a)

The operations outlined above indicate one way of generating the required stepped interface.
They are simply the virtual operations which allow us to produce the required defect — similar
operations were first used by Volterra®? in describing the elastic properties of cut and deformed
cylinders, operations which were later recognised to generate the ordinary dislocations that
metallurgists are so familiar with.
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Having defined b,, we note that an initially planar coherent twin boundary can acquire a step
if a dislocation of Burgers vector b, crosses the interface. The height of the step is given by>!

h=b,.p

so that
b, =m(b,,.p)d (16Db)

From equation 11d, the invariant plane strain necessary to generate the twin from the parent
lattice is given by (M P M) = I+ m[M;d](p; M*)so that equation 16b becomes

[M;b,] = (M P M)[M;b,, | — [M;b,,] (16¢)

A C 0

single crystal crystal cutalong xy  gap opened on gap rewelded, step
shearing generated in coherent
twin boundary

Fig. 14: The virtual operations (Ref. 27) used in determining b,.

Example 14: Interaction of Dislocations with Interfaces

Deduce the correspondence matrix for the deformation twin discussed in example 13 and hence
show that there are no geometrical restrictions to the passage of slip dislocations across coherent
twin boundaries in FCC materials.

From example 13,

(122 [T 11
(TIM)=5(2 1 2 and  (MPM)=c|1 7 1
2 21 2 2

The correspondence matrix (T C M) which associates each vector of the parent with a corre-
sponding vector in the twin is, from equation 15h, given by

(T C M) = (T JM)(MP M)
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(MCT)=MPM) " (MJT)

so that o
1 1 1 1

(TCM):(MCT):§ 111

2 2 0

The character of a dislocation will in general be altered on crossing an interface. This is because
the crossing process introduces a step in the interface, rather like the slip steps which arise at the
free surfaces of deformed crystals. We consider the case where a dislocation crosses a coherent
twin boundary. The interfacial step has dislocation character so that the original dislocation
(Burgers vector b,,,) from the parent crystal is in effect converted into two dislocations, one
being the step (Burgers vector b;) and the other the dislocation (Burgers vector b,) which has
penetrated the interface and entered into the twin lattice. If the total Burgers vector content
of the system is to be preserved then it follows that in general, b, # b, , since b,, = b, + b,.
Using this equation and equation 16¢, we see that

[M;b,| = (M P M)[M;b,,]

or

[T;b,] = (T JM)(M P M)[M;b,]

so that
[T;b,] = (T C M)[M;b,,] (17a)

Clearly, dislocation glide across the coherent interface will not be hindered if b, is a perfect
lattice vector of the twin. If this is not the case and b, is a partial dislocation in the twin, then
glide across the interface will be hindered because the motion of b, in the twin would leave a
stacking fault trailing all the way from the interface to the position of the partial dislocation
in the twin.

There is an additional condition to be fulfilled for easy glide across the interface; the corre-
sponding glide planes p,, and p, of dislocations b,, and b, in the parent and twin lattices
respectively, must meet edge to edge in the interface. Now,

(P T) = (P, M")(M C T) (17b)

If the interface plane normal is p;, then the edge to edge condition is satisfied if p,, Ap,|| P, AP;-

Dislocations in FCC materials usually glide on close—packed {1 1 1} planes and have Burgers
vectors of type § < 1 10 >. Using the data of Table 1 it can easily be verified that all the
close-packed planes of the parent lattice meet the corresponding glide planes in the twin edge to
edge in the interface, which is taken to be the coherent (1 1 1),, twinning plane. Furthermore,
all the 5 < 1 1 0 > Burgers vectors of glide dislocations in the parent correspond to perfect
lattice dislocations in the twin. It must be concluded that the coherent twin boundary for
{111} twins in FCC metals does not offer any geometrical restrictions to the transfer of slip

between the parent and product lattices.

These data (Table 1) also show that all dislocations with Burgers vectors in the (1 1 1),,
plane are unaffected, both in magnitude and direction, as a result of crossing into the twin.
For example, %[1 T 0],, becomes §[1 1 0], so that |b,,| = |b,|, and using (T J M) it can
be demonstrated that [1 1 0],,|| [L 1 0];. This result is expected because these particular
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Table 1: Corresponding Glide Planes and Burgers Vectors

Parent Twin

%[1 1 0] al0 0 1]
210 1] 20711
a0 1 1] 970 7]
2110 21710
21107] 21107
2101 1] 2011
(111) I171)
(1171) (117)
(1T1) (020)
(111) (200)

dislocations cannot generate a step in the (1 1 1),, interface when they cross into the twin
lattice (see equation 16b). Only dislocations with Burgers vectors not parallel to the interface
cause the formation of steps.

The data further illustrate the fact that when b, lies in the (1 1 1),, plane, there is no
increase in energy due to the reaction b,, — b,+b,, which occurs when a dislocation crosses the
interface. This is because b, = 0 and b, = b,,,. For all other cases b, is not zero and since |b,| is
never less than |b, |, b,, — b,+b, is always energetically unfavourable. In fact, in the example
being discussed, there can never be an energy reduction when an § < 1 1 0 > dislocation
penetrates the coherent twin boundary. The dislocations cannot therefore spontaneously cross
the boundary. A trivial case where dislocations might spontaneously cross a boundary is when
the latter is a free surface, assuming that the increase in surface area (and hence surface
energy) due to the formation of a step is not prohibitive. Spontaneous penetration of the
interface might also become favourable if the interface separates crystals with very different

elastic properties.

The results obtained show that single dislocations can glide into twins in FCC crystals without
leaving a fault; there are no geometrical restrictions to the passage of slip dislocations across the
coherent twin boundaries concerned. It can similarly be demonstrated that slip dislocations can
comfortably traverse the coherent twin boundaries of {1 1 2} twins in BCC or BCT lattices
and this has implications on the interpretation of the strength of martensite?!. As will be
discussed later, the substructure of martensite plates in steels (and in many non-ferrous alloys)
often consists of very finely spaced {1 1 2} transformation twins. It was at one time believed
that the twins were mainly responsible for the high strength of ferrous martensites, because the
numerous twin boundaries should hinder slip — the analysis above clearly suggests otherwise.
Indeed, twinned martensites which do not contain carbon also do not exhibit exceptionally
high strengths and it is now generally accepted that the strength of virgin ferrous martensites
is largely due to interstitial solid solution hardening by carbon atoms, or in the case of lightly
autotempered martensites due to carbon atom clustering or fine precipitation. Consistent with
this, it is found that Fe-30Ni (wt%) twinned martensites are not particularly hard.

Finally, it should be mentioned that even when glide across coherent twin boundaries in marten-
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M2, 1‘1m

2
n

Fig. 15: The passage of a slip dislocation across a coherent twin boundary in
a BCC crystal. The twinning system is {1 12} <111 >, s = 272, The
subscripts m and t refer to the twin and matrix respectively; the open arrows
indicate the sense of the Burgers vectors and the dislocation line vectors are

all parallel to [T 1 O]M,T'

sites should be unhindered, the boundaries will cause a small amount of hardening, partly
because the corresponding slip systems in the matrix and twin will in general be differently
stressed®!:33 (simply because they are not necessarily parallel) and partly due to the work
necessary to create the steps in the interfaces. It is emphasised, however, that these should be
relatively small contributions to the strength of martensite. Fig. 15 illustrates the passage of
a slip dislocation across a coherent {1 1 2} twin interface in a BCC material.

Eigenvectors and Eigenvalues

In Chapter 2, equation 8b was used to determine the direction which remains unrotated and
undistorted as a result of a rigid body rotation. To examine the properties of invariant—
plane strains and other strains (or linear transformations) in more detail, it is necessary to
establish a more general method of determining the directions which remain unrotated, though
not necessarily undistorted, as a consequence of the deformation concerned. Vectors lying
along such unrotated directions are called eigenvectors of the deformation (or transformation)
matrix, and the ratios of their final to initial lengths are the corresponding eigenvalues of
the matrix. Considering the deformation matrix (A S A), the unrotated directions may be
determined by solving the equations

(A'S A)[A;u] = A[A;ul (18a)

where u is a unit vector lying along an eigenvector, A is a convenient orthonormal basis and
A is a scalar quantity. This equation shows that the vector u does not change in direction as
a result of (A S A), although its length changes by the ratio A (equation 18a can be compared
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with equation 8b, where A = 1). If I is a 3 x 3 identity matrix, then on rearranging equation 18a,
we obtain

{(ASA) = A}[A;ul=0 (18b)
which can be written more fully as:
S —A St S13 Uy
S1 Spa = A So3 uy | =0 (18¢)
S31 S Szz — A Us
where [A;u] = [uy uy ug]. This system of homogeneous equations has non—trivial solutions if
Siu—A S S13
So1 Spy — A Sa3 =0 (18d)
S31 S32 Sz3 = A

The expansion of this determinant yields an equation which is in general cubic in A; the
roots of this equation are the three eigenvalues ;. Associated with each of the eigenvalues is a
corresponding eigenvector whose components may be obtained by substituting each eigenvalue,
in turn, into equation 18c. Of course, since every vector which lies along the unrotated direction
is an eigenvector, if u is a solution of equation 18c then ku must also satisfy equation 18c, k
being a scalar constant. If the matrix (A S A) is real then there must exist three eigenvalues, at
least one of which is necessarily real. If (A S A) is symmetrical then all three of its eigenvalues
are real; the existence of three real eigenvalues does not however imply that the deformation
matrix is symmetrical. Every real eigenvalue implies the existence of a corresponding vector
which remains unchanged in direction as a result of the operation of (A S A).

Example 15: Eigenvectors and Eigenvalues

Find the eigenvalues and eigenvectors of

18 —6 —6
(ASA)=| -6 21 3
-6 3 21

To solve for the eigenvalues, we use equation 18d to form the determinant

18— A —6 —6
6 21— A 3 =0
—6 3 21— A
which on expansion gives the cubic equation

(12— M)A —30)(A —18) =0

with the roots
A =12, Ay =30 and Ay =18

To find the eigenvector u = [A;u] = [u; u, ug] corresponding to A;, we substitute \; into
equation 18c to obtain
6u; — 6uy — 6uy =0
—6u1 + 9“12 + 3“3 = 0
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These equations can be simultaneously solved to show that u; = 2u, = 2us. The other two
eigenvectors, v and x, corresponding to A, and A5 respectively, can be determined in a similar
way. Hence, it is found that:

N

[Asu] = (672)[2 1 1]

)11

(NI

[A;v] = (37
[Asx] = (275)[0 1 1)

All vectors parallel to u, v or x remain unchanged in direction, though not in magnitude, due
to the deformation (A S A).

Comments

(i) Since the matrix (A S A) is symmetrical, we find three real eigenvectors, which form
an orthogonal set.

(ii) A negative eigenvalue implies that a vector initially parallel to the corresponding
eigenvector becomes antiparallel (changes sign) on deformation. A deformation like
this is physically impossible.

(iii) If a new orthonormal basis B is defined, consisting of unit basis vectors parallel to
u, v and x respectively, then the deformation (A S A) can be expressed in the new
basis with the help of a similarity transformation. From equation 11,

(BSB)=(BJA)ASA)AJB) (18¢)

where the columns of (A J B) consist of the components (referred to the basis A) of the
eigenvectors u, v and x respectively, so that

Uy Uy  Us 18 -6 -6 U, v, Wy 18 0 0
BSB)=| v, vy, v 6 21 3 uy vy wy | ={( 0 30 0
w; Wy Wy -6 3 21 Us V3 Wy 0 0 12

Notice that (B S B) is a diagonal matrix (off diagonal terms equal zero) because it is referred to
a basis formed by the principal axes of the deformation - i.e. the three orthogonal eigenvectors.
The matrix representing the Bain Strain in chapter 1 is also diagonal because it is referred to
the principal axes of the strain. Any real symmetrical matrix can be diagonalised using the
procedure illustrated above. (B S B) is called the ‘diagonal’ representation of the deformation
(since off diagonal components are zero) and this special representation will henceforth be
identified by placing a bar over the matrix symbol: (B S B).

Stretch and Rotation

Inspection of the invariant—plane strain (Z P1 Z) illustrated in Fig. 10a shows that it is possible
to find three initially orthogonal axes which are not rotated by the deformation. These principal
axes are the eigenvectors of (Z P1 Z); any two mutually perpendicular axes in the invariant—
plane constitute two of the eigenvectors and the third is parallel to the invariant—plane normal.
The matrix (Z P1 Z) is symmetrical (equation 11d) and indeed, would have to be symmetrical
to yield three real and orthogonal eigenvectors. Since all vectors lying in the invariant—plane
are unaffected by the deformation, two of the eigenvectors have eigenvalues of unity; the third
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has the eigenvalue 1 + 6. Hence the deformation simply consists of an extension along one of
the principal axes.

As discussed in Chapter 1 (under homogeneous deformations), a strain like (Z P1 Z) is called
a pure deformation and has the following characteristics:

(i) It has a symmetrical matrix representation irrespective of the choice of basis.

(ii) It consists of simple extensions or contractions along the principal axes. The ratios
of the final to initial lengths of vectors parallel to the principal axes are called the
principal deformations, and the change in length per unit length the principal strains.

(iii) It is possible to find three real and orthogonal eigenvectors.

We note that a pure deformation need not be an invariant-plane strain; the strain (A S A) of
example 15 is a pure deformation, as is the Bain strain. On the other hand, the shear (Z P2 Z)
illustrated in Fig. 10b is not a pure deformation because it is only possible to identify two
mutually perpendicular eigenvectors, both of which must lie in the invariant—plane. All other
vectors are rotated by the shearing action. The deformation is illustrated again in Fig. 16a,
where the original lattice, represented as a sphere, is sheared into an ellipsoid. The invariant—
plane of the deformation contains the z, and z, axes. The deformation can be imagined to
occur in two stages, the first one involving simple extensions and contractions along the y,
and y, directions respectively (Fig. 16b) and the second involving a rigid body rotation of the
ellipsoid, about the axis z,|| y,, through a right-handed angle ¢.

In essence, we have just carried out an imaginary factorisation of the impure strain (Z P2 Z)
into a pure strain (Fig. 16b) and a rigid body rotation. If the pure strain part is referred to as
(Z Q Z) and the rotation part as (Z J Z), then

(ZP27)=(2J7)(Z Q7Z) (19a)

It was arbitrarily chosen that the pure strain would occur first and be followed by the rigid
body rotation, but the reverse order is equally acceptable,

(ZP27)=(ZQ27Z)(Z J27)
where in general,
(ZQ27)#(Z2Q7Z) and (ZJ27)#(ZJ7)

Any real deformation can in general be factorised into a pure strain and a rigid body rotation,
but it is important to realise that the factorisation is simply a mathematical convenience and
the deformation does not actually occur in the two stages. The factorisation in no way indicates
the path by which the initial state reaches the final state and is merely phenomenological.

The actual factorisation can be considered in terms of the arbitrary deformation (Z S Z),
referred to an orthonormal basis Z. Bearing in mind that (Z S’ Z) is the transpose of (Z S Z),

(ZS' Z)NZSZ)=(2Q Z)Z VZ)Z I Z)(Z Q Z)
oo (ZS' Z)WZSZ)=(ZQ7Z)?

since (Z J'Z)(ZJZ)=Tand (Z Q' Z) = (Z Q Z),(Z Q Z) being a pure deformation having a
symmetrical matrix representation. If the product (Z S’ Z)(Z S Z) is written as the symmetrical

(19b)
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total deformation (Z P2 2) pure strain part (Z Q 2)

Fig. 16: Factorisation of a simple shear (Z P2 Z) into a pure deformation
(Z Q Z) and a right handed rigid body rotation of ¢ about z,. In (a), ac is the
trace of the invariant plane. (Z Q Z) leaves ac undistorted but rotated to a’c’
and rigid body rotation brings a’¢’ into coincidence with ac. The axes y;, ¥y
and y5 are the principal axes of the pure deformation. The undeformed shape

is represented as a sphere in three dimensions.

matrix (Z T Z), then the eigenvalues A, of (Z T Z) are also the eigenvalues of (Z Q Z)*, so that
the eigenvalues of (Z Q Z) are /},. If the eigenvectors of (Z T Z) are u, v and x (corresponding
to Ay, Ay and Aj respectively), then (Z T Z) can be diagonalised by similarity transforming it
to another orthonormal basis Y formed by the vectors u,v and x. From equation 18e,

B A, 0 0
YTY)=[0 XA 0|=(JIZEZTZ(ZJIY)
0 0 A

where the columns of (Z J Y) consist of the components of u,v and x, respectively, when the
latter are referred to the Z basis. It follows that since (Y Q Y)2 =(YTY),

1
2

(ZQZ)=(ZIY)YTY)(YJZ)

ST
-
H
=
Nf=
Il

where the square root of a diagonal matrix (Y TY) is such that (Y TY)
(Y TY). It follows that:

U v wy VA, 0 0 Up Uy Uz
(ZQZ)y=|uy vy w, 0 VA, 0 v, Uy Uy (19¢)
Uz Vg Ws 0 0 Vi Wy Wy Wy

It is worth repeating that in equation 19c, A, are the eigenvectors of the matrix (Z S’ Z)(Z S Z)
and u;, v; and w, are the components, in the basis Z of the eigenvectors of (Z S’ Z)(Z S Z).
The rotation part of the strain (Z S Z) is simply

(ZJZ)=(Z2S2Z)(2Q1Z)"" (19d)
Example 16: The FCC to HCP transformation revisited

A Co—6.5Fe wt% alloy transforms from an FCC () structure to a HCP martensite structure
with zero change in density?!. The invariant plane of the transformation is the close—packed
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{11 1}7 plane, the shear direction being < 112 > - The magnitude of the shear is 8_%, which
is half the normal twinning shear for FCC crystals. By factorising the total transformation
strain into a pure strain and a rigid body rotation, show that the maximum extension or
contraction suffered by any vector of the parent lattice, as a result of the transformation, is
less than 20%.

Representing the FCC parent lattice in an orthonormal basis Z, consisting of unit basis vectors
parallel to [1 0 0], [0 1 0] and [0 0 1] FCC directions respectively, and substituting (p;Z*) =
(372)(1 1 1), [Z;d] = (672)[1 1 2] and m = 8~ 2 into equation 11d, the total transformation
strain (Z P Z) is found to be:

13 1 1
ZPZ)=—| 1 13 1
12\ 5 9 10

This can be factorised into a pure strain (Z Q Z) and a rigid body rotation (Z J Z). That
the eigenvectors of (Z Q Z) represent the directions along which the maximum length changes
occur can be seen from Fig. 6 (the basis Y of Fig. 6 differs from the present basis Z. In fact, the
basis vectors of Y are parallel to the eigenvectors of (Z Q Z)). (Z P Z) is illustrated in Fig. 6¢
and (Z Q Z) in Figs. 6a,b. It is seen that the axes of the ellipsoid represent directions along
which the greatest length changes occur; these axes are of course the eigenvectors of (Z Q Z).
Writing (Z T Z) = (Z P’ Z)(Z P Z), we obtain:

174 30 —6
ZTZ)=— | 30 174 —6
M4\ s 6 102

The eigenvalues and eigenvectors of (Z T Z) are:

A, = 1.421535 [Z;u] = [0.704706  0.704706 —0.082341]
A, = 1.000000 [Z;v] = [0.707107 —0.707107  0.000000]
Ay =0.703465 [Z;x] = [0.058224 0.058224  0.996604]

Notice that the eigenvectors form an orthogonal set and that consistent with the fact that v
lies in the invariant plane, A, has a value of unity. u, v and x are also the eigenvectors of
(Z Q 7). The eigenvalues of (Z Q Z) are given by the square roots of the eigenvalues of (Z T Z);
they are 1.192282; 1.0 and 0.838728. Hence, the maximum extensions and contractions are less
than 20% since each eigenvalue is the ratio of the final to initial length of a vector parallel to
an eigenvector. The maximum extension occurs along u and the maximum contraction along
x. The matrix (Z Q Z) is given by equation 19c¢ as:

0.70471 0.70711  0.05822 1.19228 0.0 0.0
(ZQZ)=| 070471 —0.70711 0.05822 0.0 1.00000 0.0
—0.08234  0.00000  0.99660 0.0 0.0 0.83873

0.70471 0.70471 —0.08234
x | 070711 —-0.70711  0.00000
0.05822  0.05822 0.99660

1.094944  0.094943 —0.020515
= 0.094943 1.094944  —0.020515
—0.020515 —0.020515 0.841125
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and
0.920562 —0.079438 0.020515

(ZQZ)fl: —0.079438  0.920562 0.020515
0.020515 0.020515  1.189885

From equation 19d, (Z J Z) = (Z P Z)(Z Q Z)™*

0.992365 —0.007635 0.123091
(ZJZ)= 1 —0.007635 0.992365 0.123091
—0.123092 —0.123092 0.984732

The matrix (Z J Z), from equation 8, represents a right-handed rotation of 10.03° about
[110], axis.

It is interesting to examine what happens to the vector [1 1 2], due to the operations (Z Q Z)
and (Z J Z):
(Z QZ)112], =[1.230916 1.230916 — 1.723280],

where the new vector can be shown to have the same magnitude as [1 1 2] but points in a
different direction. The effect of the pure rotation is

(Z J 7)[1.230916 1.230916 — 1.723280], = [11 2],

Thus, the pure strain deforms [1 1 2], into another vector of identical magnitude and the pure
rotation brings this new vector back into the [1 1 2], direction, the net operation leaving it
invariant, as expected, since [1 1 2], is the shear direction which lies in the invariant plane.
Referring to Fig. 6, the direction fe =[110],, cd =[11 2], and ¢/d’ = [1.230916 1.230916 —
1.723280],. ¢'d’ is brought into coincidence with cd by the rigid body rotation (Z J Z) to

generate the invariant plane containing fe and cd.

Physically, the FCC to HCP transformation occurs by the movement of a single set of Shockley
partial dislocations, Burgers vectorb = g <11 2 >, on alternate close-packed {11 1}w planes.
To produce a fair thickness of HCP martensite, a mechanism has to be sought which allows
Shockley partials to be generated on every other slip plane. Some kind of a pole mechanism (see
for example, p. 310 of ref. 25) would allow this to happen, but there is as yet no experimental
evidence confirming this. Motion of the partials would cause a shearing of the ~ lattice, on the
system {111} <11 2 >_, the average magnitude 5 of the shear being 5 = [b|/2d, where d is

the spacing of the close—packed planes. Hence, 5 = 6_%a/2(3_%a) = 8 2. This is exactly the
shear system we used in generating the matrix (Z P Z) and the physical effect of the shear on
the shape of an originally flat surface is, in general, to tilt the surface (about a line given by
its intersection with the HCP habit plane) through some angle dependant on the indices of the
free surface. By measuring such tilts it is possible to deduce s, which has been experimentally
confirmed to equal half the twinning shear.

In FCC crystals, the close-packed planes have a stacking sequence ... ABCABCABC ...; the
passage of a single Shockley partial causes the sequence to change to ... ABA... creating
a three layer thick region of HCP phase since the stacking sequence of close-packed planes
in the HCP lattice has a periodicity of 2. This then is the physical manner in which the
transformation occurs, the martensite having a {1 1 1}, habit plane — if the parent product
interface deviates slightly from {11 1} » then it will consist of stepped sections of close-packed
plane, the steps representing the Shockley partial transformation dislocations. The spacing of
the partials along <111 > would be 2d. In other words, in the stacking sequence ABC,
the motion of a partial on B would leave A and B unaffected though C would be displaced by
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6" 2a<112 >_ to a new position A, giving ABA stacking. Partials could thus be located on
every alternate plane of the FCC crystal.

Hence, we see that the matrix (Z P Z) is quite compatible with the microscopic dislocation
based mechanism of transformation. (Z P Z) predicts the correct macroscopic surface relief
effect and its invariant plane is the habit plane of the martensite. However, if (Z P Z) is
considered to act homogeneously over the entire crystal, then it would carry half the atoms
into the wrong positions. For instance, if the habit plane is designated A in the sequence ABC
of close packed planes, then the effect of (Z P Z) is to leave A unchanged, shift the atoms on
plane C by 2sd and those on plane B by sd along <11 2 > Of course, this puts the atoms
originally in C sites into A sites, as required for HCP stacking. However, the B atoms are
located at positions half way between B and C sites, through a distance {5 <11 2 > Shuffles
are thus necessary to bring these atoms back into the original B positions and to restore the
...ABA ... HCP sequence. These atomic movements in the middle layer are called shuffles
because they occur through very small distances (always less than the interatomic spacing)
and do not affect the macroscopic shape change?”. The shuffle here is a purely formal concept;
consistent with the fact that the Shockley partials glide over alternate close—packed planes,
the deformation (Z P Z) must in fact be considered homogeneous only on a scale of every two
planes. By locking the close—packed planes together in pairs, we avoid displacing the B atoms
to the wrong positions and thus automatically avoid the reverse shuffle displacement.

In the particular example discussed above, the dislocation mechanism is established experi-
mentally and physically reasonable shear systems were used in determining (Z P Z). However,
in general it is possible to find an infinite number of deformations®2” which may accomplish
the same lattice change and slightly empirical criteria have to be used in selecting the correct
deformation. One such criterion could involve the selection of deformations which involve the
minimum principal strains and the minimum degree of shuffling, but intuition and experimen-
tal evidence is almost always necessary to reach a decision. The Bain strain which transforms
the FCC lattice to the BCC lattice is believed to be the correct choice because it seems to
involve the least atomic displacements and zero shuffling of atoms?*. The absence of shuffles
can be deduced from the Bain correspondence matrix (o C =) which can be deduced from
inspection since its columns are rational lattice vectors referred to the a basis, produced by
the deformation of the basis vectors of the v basis; since [1 0 0], is deformed to [11 0], [0 1 0],
to [T 1 0], and [0 0 1], to [0 0 1],, by the Bain strain (Fig. 1), the correspondence matrix is
simply:

11
(aCy)=11 1 (20)
0 0

_ o O

If u is a vector defining the position of an atom in the v unit cell, then it can be verified that
(a C v)[y; u] always gives a corresponding vector in the « lattice which terminates at a lattice
point. For example, %[1 0 1], corresponds to %[1 1 1],,; both these vectors connect the origins
of their respective unit cells to an atomic position. The Bain correspondence thus defines the
position of each and every atom in the « lattice relative to the « lattice. It is only possible
to obtain a correspondence matrix like this when the primitive cells of each of the lattices
concerned contain just one atom?®.

The primitive cell of the HCP lattice contains two atoms and any lattice correspondence will
only define the final positions of an integral fraction of the atoms, the remainder having to
shuffle into their correct positions in the product lattice. This can be demonstrated with
the correspondence matrix for the example presented above. It is convenient to represent the
conventional HCP lattice (basis H) in an alternative orthorhombic basis (symbol O), with basis
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vectors:

| - 1__
100)o=50T1, =3TT20]

| R -
010)p=32TT,=[1100,

2
001]p=3[111],=[0001]

%[T1O]y=l3[T2TO]H

200 171y =31 1201,

octahedral plane of FCC cell &
basal plane of HCP cell

[10 O]O basal plane of

orthorhombic
unit cell

Fig. 17: Representation of bases O, H, and 7. The directions in the hexagonal

cell are expressed in the Weber notation.

The orthorhombic unit cell thus contains three close—packed layers of atoms parallel to its
(0 0 1) faces. The middle layer has atoms located at [0 § 3], [1 & 3]p and [ 2 3]o. The
other two layers have atoms located at each corner of the unit cell and in the middle of each
(0 0 1) face, as illustrated in Fig. 17.

From our earlier definition of a correspondence matrix, (O C ) can be written directly from
the relations (between basis vectors) stated earlier:

[0 21
(yCO)=5|-1 -1 1
1 -1 2

Alternatively, the correspondence matrix (O C ) may be derived (using equation 15) as fol-
lows:

(0C) =Ty P~
The matrix (y P ) is the total strain, which transforms the FCC lattice into the HCP lattice; it
is equal to the matrix (Z P Z) derived in example 16, since the basis vectors of the orthonormal
basis Z are parallel to the corresponding basis vectors of the orthogonal basis . It follows
that:

0 -1 1 13/12  1/12  1/12
OCy) =1|2/3 -1/3 —1/3 112 13/12  1/12
1/2 1/2  1/2 —2/12 —2/12 10/12

~1/4 —5/4 3/4
= 3/4 —1/4 —1/4
12 1/2  1/2
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INVARIANT-PLANE STRAINS

and
1 0 2 1
(yCO)= 3 -1 -1 1
1 -1 2

Using this correspondence matrix, we can show that all the atoms, except those in the middle
close—packed layer in the unit cell, have their positions relative to the parent lattice defined by
the correspondence matrix. For example, the atom at the position [1 0 0], corresponds directly
to that at [0 T 1], in the FCC lattice. However, [0 3 3]o corresponds to 3[7 1 4] , and there is
no atom located at these co—ordinates in the y lattice. The generation of the middle layer thus
involves shuffles of (11 2].,, as discussed earlier; we note that L7 4]v_% [112], = 1[101] o
Thus, the atom at [0 3 3], is derived from that at $[1 0 1] -, in addition to a shuffle displacement

through 5[1 1 2.
The Conjugate of an Invariant—Plane Strain

We have already seen that an FCC lattice can be transformed to an HCP lattice by shearing
the former on the system {111} <112 >,s= 8~ 2. This shear represents an invariant—plane
strain (Z P Z) which can be factorised into a pure strain (Z Q Z) and a rigid body rotation
(Z J Z), as in example 16. The pure deformation (Z Q Z) accomplishes the required lattice
change from FCC to HCP, but is not an invariant—plane strain. As illustrated in Fig. 6 and
in example 16, it is the rigid body rotation of 10.03° about < 1 1 0 > that makes the {1 1 1}
plane invariant and in combination with (Z Q Z) produces the final orientation relation implied

by (Z P 7).

Referring to Fig. 6a,b, we see that there are in fact two ways?” in which (Z Q Z) can be
converted into an invariant—plane strain which transforms the FCC lattice to the HCP lattice.
The first involves the rigid body rotation (Z J Z) in which ¢/d’ is brought into coincidence with
cd, as shown in Fig. 6¢. The alternative would be to employ a rigid body rotation (Z J2 Z),
involving a rotation of 10.03° about < 1 1 0 >, which would bring a’b’ into coincidence with
ab, making ab the trace of the invariant-plane. Hence, (Z Q Z) when combined with (Z J2 Z)
would result in a different invariant—plane strain (Z P2 Z) which also shears the FCC lattice
to the HCP lattice. From equation 8c, (Z J2 Z) is given by:

0.992365 —0.007635 —0.123091
(Z J27Z)= | —0.007635 0.992365 —0.123091
0.123092 0.123092  0.984732

From example 16, (Z Q Z) is given by:

1.094944  0.094943  —0.020515
(ZQ7Z)=1 0.094943 1.094944  —0.020515
—0.020515 —0.020515 0.841125

From equation 19a, (Z P2 Z) = (Z J2 Z)(Z Q Z)

1.0883834 0.088384 —0.123737
(ZP27)= 0.088384 1.088384 —0.123737
0.126263 0.126263  0.823232

On comparing this with equation 11d, we see that (Z P2 Z) involves a shear of magnitude

s=82on {557} 5z <7710 >,. It follows that there are two ways of accomplishing the
FCC to HCP change:

Mode 1: Shearon {557}, <7710 >, s=877
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Mode 2: Shearon {111}, <112>, s=872

Both shears can generate a fully coherent interface between the FCC and HCP lattices (the
coherent interface plane being coincident with the invariant—plane). Of course, while the {111}
interface of mode 2 would be atomically flat, the {5 5 7} interface of mode 1 must probably
be stepped on an atomic scale. The orientation relations between the FCC and HCP lattices
would be different for the two mechanisms. In fact, (Z J2 Z) is

—0.2121216 —1.2121216 0.6969703
(ZJ27Z)= | 0.7373739 —0.2626261 —0.2323234
0.3484848 0.3484848 0.7121212

It is intriguing that only the second mode has been observed experimentally, even though both
involve identical shear magnitudes.

A general conclusion to be drawn from the above analysis is that whenever two lattices can be
related by an IPS (i.e. whenever they can be joined by a fully coherent interface), it is always
possible to find a conjugate IPS which in general allows the two lattices to be differently
orientated but still connected by a fully coherent interface. This is clear from Fig. 6 where we
see that there are two ways of carrying out the rigid body rotation in order to obtain an IPS
which transforms the FCC lattice to the HCP lattice. The deformation involved in twinning
is also an IPS so that for a given twin mode it ought to be possible to find a conjugate twin
mode. In Fig. 13b, a rigid body rotation about [1 1 0], which brings K, into coincidence with
K} would give the conjugate twin mode on (1 1 1)[1 1 2].

We have used the pure strain (Z Q Z) to transform the FCC crystal into a HCP crystal.
However, before this transformation, we could use any of an infinite number of operations (e.g.
a symmetry operation) to bring the FCC lattice into self-coincidence. Combining any one of
these operations with (Z Q Z) then gives us an alternative deformation which can accomplish
the FCC—HCP lattice change without altering the orientation relationship. It follows that
two lattices can be deformed into one another in an infinite number of ways. Hence, prediction
of the transformation strain is not possible in the sense that intuition or experimental evidence
has to be used to choose the ‘best’ or 'physically most meaningful’ transformation strain.

Example 17: The Combined Effect of two invariant—plane Strains

Show that the combined effect of the operation of two arbitrary invariant—plane strains is
equivalent to an invariant—line strain (ILS). Hence prove that if the two invariant—plane strains
have the same invariant—plane, or the same displacement direction, then their combined effect
is simply another IPS2.

The two invariant—plane strains are referred to an orthonormal basis X and are designated
(X P X) and (X Q X), such that m and n are their respective magnitudes, d and e their
respective unit displacement directions and p and q their respective unit invariant—plane nor-
mals. If (X Q X) operates first, then the combined effect of the two strains (equation 1le)
is

(X P X)X QX)={I+m[X;d](p; X") H{I + n[X;e](q; X")}
=1+ m[X;d](p; X*) + n[X; e](q; X*) + mn[X; d](p; X")[X; e](q; X*) (21a)
=1+ m[X;d](p; X*) + n[X; €](q; X*) + g[X; d](q; X")

where g is the scalar quantity g = mn(p; X*)[X;e].
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INVARIANT-PLANE STRAINS

If u is a vector which lies in both the planes represented by p and q, i.e. it is parallel to p A q,
then it is obvious (equation 21a) that (X P X)(X Q X)[X;u] = [X;u], since (p; X*)[X;u] =0
and (q; X*)[X;u] = 0. It follows that u is parallel to the invariant line of the total deformation
(XS X)=(XPX)(X Q X). This is logical since (X P X) should leave every line on p invariant
and (X Q X) should leave all lines on q invariant. The line that is common to both p and q
should therefore be unaffected by (X P X)(X Q X), as is clear from equation 21a. Hence, the
combination of two arbitrary invariant—plane strains (X P X)(X Q X) gives and Invariant-Line
Strain (X S X).

If d = e, then from equation 21a
(XPX)(XQX)=I+[X;d](r;X*) where (r; X*) = m(p; X*) + n(q; X*) + g(q; X*)

which is simply another IPS on a plane whose normal is parallel to r. If p = q, then from
equation 21a

(X P X)(X QX) =TI+ [X;f](p; X*) where [X;f] = m[X;d] + n[X;e] + g[X;d]

which is an IPS with a displacement direction parallel to [X;f].

Hence, in the special case where the two IPSs have their displacement directions parallel, or
have their invariant—plane normals parallel, their combined effect is simply another IPS. It is
interesting to examine how plane normals are affected by invariant-line strains. Taking the
inverse of (X S X), we see that

XSX)'=XQX)'XPX)!
or from equation 13,

(X S X)™' =T—an[X;e](q; X*)T - bm[X; d](p; X*) (21b)
=1 —an[X;e](q; X) — bm[X; d](p; X*) + cnm[X; €] (p; X7)

where a, b and c¢ are scalar constants given by 1/a = det(X Q X), 1/b = det(X P X) and

¢ = ab(q; X*)[X; d].

If h = eAd, then h is a reciprocal lattice vector representing the plane which contains both e
and d. It is evident from equation 21b that (h; X*)(X S X) ™' = (h; X*), since (h; X*)[X; ] = 0
and (h; X*)[X;d] = 0. In other words, the plane normal h is an invariant normal of the
invariant-line strain (X S X) ™"

We have found that an ILS has two important characteristics: it leaves a line u invariant
and also leaves a plane normal h invariant. If the ILS is factorised into two IPS’s, then u
lies at the intersection of the invariant—planes of these component IPS’s; and h defines the
plane containing the two displacement vectors of these IPS’s. These results will be useful in
understanding martensite.

Worked Examples in the Geometry of Crystals by H. K. D. H. Bhadeshia, 2nd edition, 2001.
ISBN 0-904357-94-5. First edition published in 1987 by the Institute of Metals, 1 Carlton
House Terrace, London SW1Y 5DB.
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4  Martensite

In this chapter we develop a fuller description of martensitic transformations, focussing atten-
tion on steels, although the concepts involved are applicable to materials as diverse as Al5
superconducting compounds®® and Ar — N, solid solutions®®. The fundamental requirement
for martensitic transformation is that the shape deformation accompanying diffusionless trans-
formation be an invariant—plane strain; all the characteristics of martensite will be shown to
be consistent with this condition. In this chapter, we refer to martensite in general as o’ and
body—centered cubic martensite as a.

The Diffusionless Nature of Martensitic Transformations
Diffusion means the ‘mixing up of things’; martensitic transformations are by definition3”
diffusionless. The formation of martensite can occur at very low temperatures where atomic
mobility may be inconceivably small. The diffusion, even of atoms in interstitial sites, is then
not possible within the time scale of the transformation. The martensite—start temperature
(Mg) is the highest temperature at which martensite forms on cooling the parent phase. Some
examples of Mg temperatures are given below:

Composition Mg /K Hardness HV
Zr0, 1200 1000
Fe-31Ni-0.23C wt% 83 300
Fe-34Ni-0.22C wt% <4 250
Fe-3Mn-2Si-0.4C wt% 493 600
Cu-15Al 253 200
Ar-40N, 30

Table 1: The temperature Mg at which martensite first forms on cooling, and
the approximate Vickers hardness of the resulting martensite for a number of

materials.

Worked Examples in the Geometry of Crystals by H. K. D. H. Bhadeshia, 2nd edition, 2001.
ISBN 0-904357-94-5. First edition published in 1987 by the Institute of Metals, 1 Carlton
House Terrace, London SW1Y 5DB.
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MARTENSITIC TRANSFORMATIONS

Even when martensite forms at high temperatures, its rate of growth can be so high that
diffusion does not occur. Plates of martensite in iron based alloys are known to grow at
speeds approaching that of sound in the metal3®3?; such speeds are generally inconsistent with
diffusion occurring during transformation. Furthermore, the composition of martensite can be
measured and shown to be identical to that of the parent phase (although this in itself does
not constitute evidence for diffusionless transformation).

The Interface between the Parent and Product Phases

The fact that martensite can form at very low temperatures also means that any process
which is a part of its formation process cannot rely on thermal activation. For instance, the
interface connecting the martensite with the parent phase must be able to move easily at
very low temperatures, without any significant help from thermal agitation (throughout this
text, the terms interface and interface plane refer to the average interface, as determined on a
macroscopic scale). Because the interface must have high mobility at low temperatures and at
high velocities, it cannot be incoherent; it must therefore be semi-coherent or fully coherent*C.
Fully coherent interfaces are of course only possible when the parent and product lattices can
be related by a strain which is