PhD Studentships in the
Department of Materials Science
University of Cambridge

This document lists project studentships which are fully funded and usually available immediately, if not then usually they are available from the start of the next academic year. The majority are available to ‘home rate fee’ paying students only.

For other information, please contact:
Dr Rosie Ward
Department of Materials Science and Metallurgy
University of Cambridge
27 Charles Babbage Road
Cambridge CB3 0FS

Tel: +44 1223 331955
Email: remw2@msm.cam.ac.uk

Please include a CV and state your project(s) of interest.
PhD Studentships

Fully-funded PhD studentships ... 2
PhD Studentship: Modelling of strain-rate effects in pharmaceutical tabletting .. 2
PhD projects for which funding is available from the Department on a competitive basis 2

Fully-funded PhD studentships

PhD Studentship: Modelling of strain-rate effects in pharmaceutical tabletting

Funder: Novo Nordisk (home and overseas candidates eligible)
Duration: 4 years (start October 2024)
Supervisors: Professor James Elliott
Closing date: 16 May 2024
Stipend: EPSRC equivalent, £19327 per annum

During early-stage formulation and process development, scientists undergo extensive experimental screening campaigns and, although the tablet failure risk is reduced, there still exist risks that remain undetected and often cause issues during upscaling to production settings, leading to delays and at times undesired process changes. Being able to predict the compaction behaviour at different compression speeds, densities and compositions before formulations are transferred to large-scale production, will be a game changer in the tabletting field. Develop an experimental protocol to investigate the effect of the compression speed, tablet composition and powder characteristics on the tabletting performance. The main aims of this project are:

1. Improve our existing discrete element model ((VLS-DEM) to enable the compression performance prediction considering the attributes mentioned above
2. Apply the framework to a systematic tablet production upscaling study

Applicants should have (or expect to be awarded) an upper 2nd or 1st class honours degree at the level of MSci, MEng (or overseas equivalents) in a relevant subject (Physics, Chemistry, Materials Science, Maths), some programming experience and a willingness to engage with industry throughout the project.

Informal enquiries may be made by email to Professor James Elliott, jae1001@cam.ac.uk.

Applications are made through the ‘applicant portal’ at https://www.postgraduate.study.cam.ac.uk/. Further information on the application process is available from Dr Rosie Ward (remw2@cam.ac.uk).

References

Volume-interacting level set discrete element method: The porosity and angle of repose of aspherical, angular, and concave particles
DLH van der Haven, IS Fragkopoulos, JA Elliott Powder Technology 433, 119295 (2024)

A physically consistent Discrete Element Method for arbitrary shapes using Volume-interacting Level Sets
DLH van der Haven, IS Fragkopoulos, JA Elliott Computer Methods in Applied Mechanics and Engineering 414, 116165 (2023)

PhD projects for which funding is available from the Department on a competitive basis

None at present.
The University of Cambridge and the Department of Materials Science & Metallurgy value diversity and are committed to equality of opportunity.